Combined EXAFS and X-Ray Scattering Investigation of Amorphous Zr-Based Alloys
Yu. Babanov, A. Sidorenko, A. Ryazhkin, V. Shvetsov, M. Magini, J. Mössinger, H. Kronmüller

To cite this version:

HAL Id: jpa-00255310
https://hal.archives-ouvertes.fr/jpa-00255310
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Combined EXAFS and X-Ray Scattering Investigation of Amorphous Zr-Based Alloys

* Institute of Metal Physics, S. Kovalevskaya str. 18, 620219 Ekaterinburg, GSP-170, Russia
** Udmurt State University, Izhevsk, Russia
*** ENEA, C.R. Casaccia, Via Anguillarese 301, 00060 Roma, Italy
**** Max-Plank Institut für Metallforschung, Institut für Physik, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Abstract. EXAFS spectra for all K absorption edges and X-ray scattering data have been obtained on an amorphous Fe-Zr sample prepared by mechanical alloying and a rapidly quenched Co-Zr one. Partial pair distribution functions have been determined as a solution of an inverse ill-posed problem for the system of integral equations describing combined experimental data. For Fe-Zr and Co-Zr amorphous alloys we find a high degree of chemical order and also non-Gaussian nearest neighbour distribution.

1. INTRODUCTION

Amorphous alloys formed by two transition elements have been widely interested because of their interesting structural, electronic and magnetic properties. The investigation of the magnetic properties shows that Fe0.7Zr0.3 and Co0.2Zr0.8 alloys are paramagnetic and superconducting at high Zr concentration [1]. At reduced Zr-content superconductivity is suppressed and the alloys become inhomogeneous ferromagnets [1,2] at x=0.35 for Fe and x=0.55 for Co. For low Zr concentrations, there is an interesting contrast between Co-Zr and Fe-Zr alloys. For Fe0.7Zr0.3 at x>0.85 a complex spin structure is described as a spin glass phase. Co-rich Co0.2Zr0.8 alloys remain strong ferromagnets [2].

We present here an application of combined EXAFS and X-ray scattering data to obtain short range order information for Fe0.7Zr0.3 and Co0.2Zr0.8 amorphous alloys. We use a regularization method of solving the system of integral equations describing experimental data sets [3].

2. EXPERIMENTAL AND RESULTS

Amorphous Fe0.7Zr0.3 alloy has been obtained by mechanical alloying after 17h milling starting from pure elemental powders [4]. The Co0.2Zr0.8 amorphous ribbons are produced by conventional melt spinning [5].

All measurements were performed in Ekaterinburg using laboratory EXAFS spectrometer with variable curvature bent crystal and X-ray diffractometer. Experimental Zr K-spectra were corrected on core level width (3.7 eV) by special deconvolution method. This procedure was included in preliminary experimental data processing [6].

To obtain the partial pair correlation functions (PCFs) \(g_{\ell}(r) \) of binary amorphous alloy, we use the combination of the three experimental data on X-ray scattering and absorption: the X-ray total structure factor, \(S(Q) \); the first element EXAFS, \(k \sim e^{-3} \); the second element EXAFS, \(k \sim e^{-13} \). A full description of the mathematical scheme can be found in Ref. [3].

As a solution of the system of the integral equations we present partial PCFs for Fe0.7Zr0.3 (Fig. 1a) and Co0.2Zr0.8 (Fig. 1b) amorphous alloys. Characteristics of the first coordination shell of partial PCFs for amorphous alloys and their crystalline references are given in Table 1.

Table 1: Characteristics of the first peak of the partial pair correlation functions for amorphous alloys Fe0.7Zr0.3 and Co0.2Zr0.8 and their crystalline references – crystalline Fe-Zr and Co-Zr, (r–the first interatomic distance, error \(\Delta r = \pm 0.02 \) Å, \(\varepsilon \)–asymmetry parameter, \(\Delta \varepsilon = \pm 0.1 \); N-coordination number, \(\Delta N = \pm 0.2 \) at.)

<table>
<thead>
<tr>
<th></th>
<th>Fe–Fe alloys</th>
<th>Fe–Zr alloys</th>
<th>Zr–Zr alloys</th>
<th>Co–Co alloys</th>
<th>Co–Zr alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe–Fe</td>
<td>r, Å</td>
<td>(\varepsilon), N.atan</td>
<td>r, Å</td>
<td>(\varepsilon), N.atan</td>
<td>r, Å</td>
</tr>
<tr>
<td>amorphous</td>
<td>2.48</td>
<td>1.1</td>
<td>5.7</td>
<td>2.83</td>
<td>1.1</td>
</tr>
<tr>
<td>crystalline</td>
<td>2.50</td>
<td>1.0</td>
<td>6.0</td>
<td>2.93</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1997231
3. DISCUSSION

For Fe$_{75}$Zr$_{25}$ amorphous alloy the Fe-Fe bond length is found to be practically the same as in the crystal, whereas the Fe-Zr bond length is shorter and the Zr-Zr one is more longer. For Co$_{70}$Zr$_{30}$ alloy the curve g_{Co-Co} is similar to the crystalline one as far as the forth coordination shell. The Co atoms are surrounded the Zr atoms like in crystal (asymmetry coefficient defined as a ratio of the right-hand and left-hand half-widths on the half-amplitude, $w=1$) and form a peculiar unit with a perfect configuration. A correlation between the Zr atoms is absent. As a consequence, the interatomic distance Co-Zr becomes shorter than in crystal.

In numerical simulations of the partial PCFs of TM-TM glasses it was shown [7] that attractive forces between TM-Zr atoms resulting from the strong covalent d-d interactions are expressed in terms of d-d transfer integral and the bond-order defined as the difference in the number of d-electrons in bonding and antibonding states. From our results short range order in amorphous Fe$_{75}$Zr$_{25}$ and Co$_{70}$Zr$_{30}$ is reasonably chemically ordered. The distance TM-Zr is shorter than the crystal value.

Acknowledgments

We are very grateful to Dr. A. Deeve for his help during the experiments.

References