Temperature Dependence of Local Structure Around Rb+ and Cs+ Ions in Alkali Doped Fullerenes

To cite this version:

HAL Id: jpa-00255255
https://hal.archives-ouvertes.fr/jpa-00255255
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Temperature Dependence of Local Structure Around Rb\(^+\) and Cs\(^+\) Ions in Alkali Doped Fullerenes

Faculty of Science, Okayama University, Okayama 700, Japan
* ISIR, Osaka University, Osaka 567, Japan
** Faculty of Engineering, Okayama University 700, Japan

Abstract. Rb and Cs K-edge EXAFS spectra have been measured in the temperature range from 10 to 290 K, in order to investigate the temperature dependence of local structure around Rb\(^+\) and Cs\(^+\) ions in various alkali doped fullerenes. It has been found that the alkali metal ions in Rb\(_2\)C\(_{60}\), K\(_2\)RbC\(_{60}\) and Na\(_2\)CsC\(_{60}\) occupy the center of the tetrahedral and octahedral sites of C\(_{60}\) crystals. The metal ion in the octahedral site exhibits a large fluctuation in comparison with that in the tetrahedral site. The increase in \(\alpha(2)\) of the t-site Rb-C for Rb\(_2\)C\(_{60}\) has been observed around \(T_c\), while the increase in \(\alpha(2)\) has not clearly been observed for the o-site Rb-C in K\(_2\)RbC\(_{60}\). The local structure around Rb\(^+\) ion in non-superconducting alkali doped fullerene Rb\(_2\)C\(_{60}\) has also been studied to compare with that in superconducting fullerenes.

The temperature dependence of local structure around Rb\(^+\) ions in Rb\(_2\)C\(_{60}\) and Rb\(_2\)CsC\(_{60}\) has been studied by Rb K-edge EXAFS in the temperature range from 10 to 300 K [1,2]. The results show that the Debye-Waller factor \(\alpha(2)\) between the tetrahedral site (t-site) Rb\(^+\) ion and the nearest neighboring C atoms of C\(_{60}\) increases around superconducting critical temperature \(T_c\). Most of alkali doped fullerene superconductors take a fcc crystal structure, and the metal ions are intercalated into the t- and octahedral (o-) sites. It is generally considered that a larger alkali metal ion is located preferably at the o-site because the space is larger than the t-site. Recent EXAFS studies indicate that the o-site metal ion occupies the off-center of the o-site [3,4]. In the present paper we report the temperature dependence of local structure around Rb\(^+\) and Cs\(^+\) ions in Rb\(_2\)C\(_{60}\), K\(_2\)RbC\(_{60}\), Na\(_2\)CsC\(_{60}\) and Rb\(_2\)CsC\(_{60}\). The present study is aimed to confirm the increase in \(\alpha(2)\) of the t-site Rb-C in Rb\(_2\)C\(_{60}\) around \(T_c\) by more detail Rb K-edge EXAFS measurement than that reported previously [1] and to clarify the temperature dependence of local structure around the Rb\(^+\) and Cs\(^+\) ions in alkali doped fullerenes.

The samples of Rb\(_2\)C\(_{60}\), K\(_2\)RbC\(_{60}\), Na\(_2\)CsC\(_{60}\) and Rb\(_2\)CsC\(_{60}\) were prepared by annealing stoichiometric amounts of alkali metal and C\(_{60}\) for 1028 h, 1183 h, 216 h and 1032 h, respectively, at 450 °C under vacuum of 10\(^{-5}\) Torr. The \(T_c\) of Rb\(_2\)C\(_{60}\), K\(_2\)RbC\(_{60}\) and Na\(_2\)CsC\(_{60}\) were 30, 23 and 12 K, respectively. Rb\(_2\)CsC\(_{60}\) does not exhibit superconductivity. These samples were confirmed to be almost single phase by X-ray powder diffraction. Rb and Cs K-edge EXAFS spectra of Rb\(_2\)C\(_{60}\), K\(_2\)RbC\(_{60}\), Na\(_2\)CsC\(_{60}\) and Rb\(_2\)CsC\(_{60}\) were measured in transmission mode at the Photon Factory of the National Laboratory for High Energy Physics (KEK-PF). The programs “XAFS93” and “MBF93” developed by one of the authors (H.M.) were used for EXAFS data analysis.

In the imaginary part of the radial structure function \(\Phi(r)\) of Rb\(_2\)C\(_{60}\), a pronounced peak was observed around 2.6 Å. The peak can be assigned to the t-site Rb-C scattering. The distance \(r_{RB-C}\) and \(\alpha(2)\) between the t-site Rb\(^+\) ion and the nearest neighboring C atoms have been determined to be 3.290(4) Å and 0.0110(5) Å\(^2\) at 10 K. Figure 1 shows the \(\alpha(2)\) of the t-site Rb-C in Rb\(_2\)C\(_{60}\). The \(\alpha(2)\) increases with an increase in temperature \(T\) above 40 K. The curve calculated on the basis of Einstein model with Einstein temperature \(\theta_E = 209\) K is shown in Fig. 1. The value of \(\theta_E\) is consistent with that of Rb\(_2\)CaC\(_{60}\), 212.5 K [2]. The \(\alpha(2)\) deviates below 40 K from the curve. The value shows the maximum just below \(T_c\). The result is consistent with that reported previously [1].

Two pronounced peaks were observed below 100 K in the imaginary part in \(\Phi(r)\) of K\(_2\)RbC\(_{60}\). The peak around 2.6 Å can be assigned to the t-site Rb-C scattering, while that around 3.0 Å to the o-site Rb-C scattering. The peak around 3.0 Å decreases drastically with an increase in \(T\), and was not clearly observed above 100 K. The distance \(r_{OB-C}\) and \(\alpha(2)\) between the o-site Rb\(^+\) ion and the nearest neighboring C atoms have been determined to be 3.66(1) Å and 0.039(3) Å\(^2\) at 16 K. The results show that the Rb\(^+\) ion occupies the center of this site and largely fluctuates. A large temperature dependency of \(\alpha(2)\) has also been observed. The increase in peak-intensity of the o-site Rb-C scattering with an increase in \(T\) can be reasonably explained by the large temperature dependency of \(\alpha(2)\). Though the increase in \(\alpha(2)\) around \(T_c\) is suggested, it cannot clearly be confirmed.

The imaginary part in \(\Phi(r)\) of Na\(_2\)CsC\(_{60}\) at 13 K shows three pronounced peaks at 2.82, 3.39 and 3.83 Å. It is known that Na\(_2\)CsC\(_{60}\) does not take an fcc structure but take an sc structure at low temperature [5]. It is also found from a neutron powder diffraction that Na\(^+\) ion in the t-site ion is faced to one hexagon and three hexagon-hexagon fusions in neighboring C\(_{60}\) while Cs\(^+\) ion in the o-site is faced to six hexagon-hexagon fusions. From the simulation based on the structure, the peaks at 2.82 and 3.39 Å were assigned to the t-site Cs-C and o-site Cs-C scatterings, respectively.
The occupancy fraction of Cs\(^+\) ion has been estimated to be 70\% for the o-site and 30\% for the t-site. The distances between the Cs\(^+\) ion and the nearest neighboring C atoms, \(r_{\text{CsC}}\), at 13 K have been determined to be 3.27(2) and 3.46(2) Å for the t-site, and 3.89(2) Å for the o-site. The value of \(r_{\text{CsC}}\) in the o-site is almost constant below 40 K. The value of \(\sigma(2)\) is smaller than that of the o-site Rb-C in K\(_2\)RbC\(_{40}\). The value of \(\sigma(2)\) increases with an increase in \(T\). The values of \(r_{\text{CsC}}\) and \(\sigma(2)\) could not be determined above 40 K based on the sc structure.

![Figure 1](image1.png)

Figure 1: A plot of \(\sigma(2)\) versus \(T\) for the t-site Rb-C of Rb\(_3\)C\(_{40}\). The solid line shows the Einstein model.

![Figure 2](image2.png)

Figure 2: A plot of \(\sigma(2)\) versus \(T\) for the o-site Cs-C of Na\(_2\)CsC\(_{40}\).

![Figure 3](image3.png)

Figure 3: A plot of \(\sigma(2)\) versus \(T\) for Rb-Rb of Rb\(_3\)C\(_{40}\). The solid line shows the Einstein model.

It is well known that Rb\(_3\)C\(_{40}\) takes a bcc structure [6]. Two envelopes were observed in the magnitude of \(\Phi(r)\) of Rb\(_3\)C\(_{40}\). The first envelope corresponds to Rb-C scatterings. The second envelope can be attributed to the Rb-Rb scattering. The distance between Rb\(^+\) and the nearest neighboring Rb\(^+\) ions, \(r_{\text{Rb-Rb}}\), at 10 K has been determined to be 4.093(3) Å. The value is consistent with that determined at room temperature by X-ray powder diffraction, 4.114 Å [6]. Figure 3 shows a plot of \(\sigma(2)\) versus \(T\) for Rb-Rb in Rb\(_3\)C\(_{40}\). The temperature dependency of \(\sigma(2)\) exhibits a monotonous increase with an increase in \(T\). The \(\sigma(2)\) is smaller than those of the t-site Rb-C in Rb\(_3\)C\(_{40}\), the o-site Rb-C in K\(_2\)RbC\(_{40}\) and the o-site Cs-C in Na\(_2\)CsC\(_{40}\). The \(\theta\) has been estimated from the \(\sigma(2)\) to be 125 K. The force constant between Rb\(^+\) ions has been estimated to be 23.1 Jm\(^{-2}\) from the \(\sigma(2)\) above 30 K within the framework of classical approximation.

In the present study, we have found that the o-site Rb\(^+\) and Cs\(^+\) ions occupy the center of this site in K\(_2\)RbC\(_{40}\) and Na\(_2\)CsC\(_{40}\) respectively. These ions fluctuate largely in this site. The increase in \(\sigma(2)\) of the o-site Rb-C around \(T_c\) is suggested for K\(_2\)RbC\(_{40}\), but the behavior is not clear in comparison with that found for the t-site Rb-C in Rb\(_3\)C\(_{40}\). The increase in \(\sigma(2)\) around \(T_c\) has not been observed for a non-superconductor Rb\(_3\)C\(_{40}\).

References