Interfacial Dielectric Losses in Co-Doped Ni-Zn Ferrites
G. Nicoara, M. Steflea, M. Toacsan

To cite this version:

HAL Id: jpa-00255133
https://hal.archives-ouvertes.fr/jpa-00255133
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Interfacial Dielectric Losses in Co-Doped Ni-Zn Ferrites

G. Nicoara, M. Steflea* and M. Toacsan

Institute of Physics and Technology of Materials, P.O. Box MG-7, 76900 Bucharest-Magurele, Romania
* Bucharest University, Physics Department, 76900 Bucharest-Magurele, Romania

1. INTRODUCTION

It is well known that the ferrites exhibit large values and strong frequency dependence of the dielectric permittivity (ε'). The first explanation was given by Koops[1] using a Maxwell-Wagner two-layer model. He assumed that the grains have the surface layer more or less oxidized than the bulk and an interface polarization occurs. Generally, this model could explain very well the frequency dependent permittivity ε' and the relaxation character of $\tan\delta$ with a strong increase at low frequencies [2-4].

While the frequency dependence of ε' and $\tan\delta$ were examined for different compositions system, the temperature dependencies of these parameters were less considered [2-5].

2. RESULTS AND DISCUSSIONS

In order to study the temperature and frequency dependence of ε' and $\tan\delta$ we chose the system Ni$_{0.8}$Zn$_{0.2}$Co$_x$Fe$_2$O$_4$ ($0 \leq x \leq 0.2$). The samples, sintered at 1240°C for 8 hours in O$_2$ atmosphere, were investigated in the 10^2-10^6 Hz frequency range and 20-200°C temperature range. The experimental curves exhibit very different aspects. In figures 1 and 2 are presented some typical curves.

For $x \leq 0.04$, the samples have the same kind of curves like $x=0.02$, while for $x>0.04$ the curves are similar to that for $x=0.08$.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1997186
The $\varepsilon'(f) \text{ vs } \varepsilon''(f)$ Cole-Cole diagrams are circular arcs at room temperature and become open arcs at higher temperatures for $z=0.02$, while for $z=0.08$ they are open arcs at all temperatures, showing the presence of interfacial losses.

Some remarks can be done:
1. $\varepsilon'(f)$ and $\varepsilon''(f)$ are temperature increasing functions.
2. Generally, the $\varepsilon''(f)$ curves show several temperature-dependent maxima accompanied by a low frequency minimum above certain temperature.
3. For $z \leq 0.04$ the decrease of ε' appears on a very large frequency range and $\varepsilon''(f)$ maxima are very well evidenced.
4. For $z > 0.04$ the decrease of ε' is faster and the $\varepsilon''(f)$ maxima are quite visible.

The very different forms of these curves, strongly dependent of temperature and composition, conducted us to examine whether they are all justified by the interfacial losses model.

So, the $\varepsilon'(f, T)$ and $\varepsilon''(f, T)$ curves were calculated on the basis of the phenomenological model of Koops[1] using the following formula:

$$
\varepsilon'(f) = \left(1 + \frac{\varepsilon_1 \rho_1^2 \varepsilon_2 + 4 \pi^2 f^2 \varepsilon_0^2 \omega_1 \omega_2 \rho_1^2 \rho_2^2 (\omega_1 \varepsilon_1 + \omega_2 \varepsilon_2)}{(\rho_1 \omega_1 + \rho_2 \omega_2)^2 + 4 \pi^2 f^2 \varepsilon_0^2 (\omega_1 \omega_2 + \omega_2 \varepsilon_2)^2 \rho_1^2 \rho_2^2} \right) \rho_1 \omega_1 + \rho_2 \omega_2^{2} + 4 \pi^2 f^2 \varepsilon_0^2 (\omega_1 \omega_2 + \omega_2 \varepsilon_2)^2 \rho_1^2 \rho_2^2 \varepsilon_1 \varepsilon_2 (\omega_1 + \omega_2 x) $$

where the subscripts 1 and 2 correspond to the surface layer and the bulk, respectively. It has been considered $\rho = A \exp(\gamma_K T)$ the resistivities with their temperature dependence, ε_i - the permittivities of the two layers ($i=1,2$), and $x = l/\ell$, the ratio of their thickness.

Some of the obtained typical curves are given in figures 3 and 4. These sets of curves were chosen because of their good resemblance with those in figs. 1 and 2, respectively. The following remarks can be done:
- All types of the experimental curves can be calculated using the Koops' model;
- The ε' and ε'' values comparable with the experimental ones are obtained for $0.08 \leq x \leq 0.15$.
- Curves like those in fig. 3 are obtained when the activation energies γ_1, γ_2 are very different and $A_1 < A_2$. For fig. 3 $\gamma_1 = 0.09, \gamma_2 = 0.35$ eV, $A_1 = 3 \times 10^5$ Qm/K, $A_2 = 9 \times 10^2$ Qm/K.
- Curves like those in fig. 4 are obtained when the two activation energies are very close and $A_1 > A_2$. For the presented case $x = 0.08, \gamma_1 = 0.42$ eV, $\gamma_2 = 0.405$ eV, $A_1 = 2.5 \times 10^5$ Qm/K, $A_2 = 2.2 \times 10^5$ Qm/K, corresponding to $\rho_1/\rho_2 = (3.4 \times 10^5)$ at room temperature.
- The calculated ε'' and ε'' curves exhibit equal values of ε'' maxima, while an increase of ε'' maximum with temperature is experimentally observed for some compositions.

Excepting this last remark, which we think can be explained by a more complicated temperature dependence of resistivities, it can be concluded the used model describes quite well the interfacial losses present in the investigated compositions.

3. REFERENCES

1. C.G.Koops, Phys.Rev. B8, 121 (1951)