Low Loss of Mg-Mn-Zn Ferrite for Deflection Yoke
K. Ikegami, Y. Masuda, H. Takei, T. Maeda

To cite this version:

HAL Id: jpa-00255097
https://hal.archives-ouvertes.fr/jpa-00255097
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Low Loss of Mg-Mn-Zn Ferrite for Deflection Yoke

K. Ikegami, Y. Masuda, H. Takei and T. Maeda

FDK Corporation, Kosai Factory, 2281 Washizu, Kosai-shi, Shizuoka 431-04, Japan

Abstract. We examined the reduction of the core loss of Mg-Mn-Zn ferrite for deflection yoke cores. We tried to decrease hysteresis loss by selection of composition and additive, because hysteresis loss is much larger than eddy current loss in Mg-Mn-Zn ferrite having high resistance. We succeeded in decreasing hysteresis loss and improved the core loss approximately 30% compared with conventional materials. And as the result of a simulation, we can expect that the rising temperature of it is smaller than that of our conventional materials for deflection yoke at high frequencies and high magnetic fields.

1. INTRODUCTION

A deflection yoke for highly detailed and wide display is used at higher frequencies more than 100 kHz. Therefore, low loss Mg-Mn-Zn ferrite at a high frequency for deflection yoke is required. In order to reduce the core loss of Mg-Mn-Zn ferrite, we examined its composition and additives.

2. EXPERIMENTAL PROCEDURE

In this examination, we obtained samples in the following method. Raw materials were mixed to obtain various ferrite compositions. These mixtures were calcined in the air and pulverized in a ball mill. Then, each powder sample was granulated and pressed into tridoidal sample and was sintered in the air. We measured the core loss, curie point and surface resistance of these samples.

3. RESULTS AND DISCUSSION

Figure 1 shows a core loss and table 1 shows characteristics of each sample. Figure 1 indicates that the core loss is reduced with increment of ZnO quantity and MnO(Fe₂O₃+MnO).

But table 1 shows that surface resistance is decreased with rising MnO(Fe₂O₃+MnO), because Fe' lowered resistance of ferrites. And Fe' is increased with increment of Mn₂O₃ in order to hold electric charge balance. And the curie point is also declined greatly, because the rate of the quantity of Fe₂O₃ to ZnO is decreasing.

Table 1. Characteristics of samples (ZnO: 18mol%)

<table>
<thead>
<tr>
<th>MnO(Fe₂O₃+MnO) %</th>
<th>11.5</th>
<th>15.1</th>
<th>19.2</th>
<th>23.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Resistance MΩ</td>
<td>1.050</td>
<td>0.007</td>
<td>0.400</td>
<td>0.300</td>
</tr>
<tr>
<td>Curie Point °C</td>
<td>106</td>
<td>132</td>
<td>140</td>
<td>125</td>
</tr>
</tbody>
</table>
Figure 2 shows that the core loss is separated into a hysteresis loss and eddy current loss in the sample of ZnO 18 mol%. In this figure, hysteresis and eddy current losses were calculated by core loss/f - f plots. As MnO/(Fe$_3$O$_4$+MnO) is increased, hysteresis loss is greatly reduced, but eddy current loss is hardly influenced. Therefore, a reduction of core loss by increasing MnO/(Fe$_3$O$_4$+MnO) is due to decreasing of hysteresis loss.

Figure 3 shows sintered density and core loss of samples in relation to addition of Bi$_2$O$_3$. The composition of samples is MnO/(Fe$_3$O$_4$+MnO): 19.2% and ZnO: 18 mol%. As an addition of Bi$_2$O$_3$ increases, sintered density becomes higher and the core loss is reducing. It is well known that addition of Bi$_2$O$_3$ is effective for rising sintered density[1]. Increment of sintered density by addition of Bi$_2$O$_3$ is caused by that impurities and vacant lattice are removed to the boundary layer. As a result, a magnetic domain wall can be easily transported and the core loss reduces. But in case an addition of Bi$_2$O$_3$ is more than 0.6 wt%, crystal sizes become non-uniformity, because of large particles caused by abnormal grain growth. Therefore, a core loss is not reduced.

![Figure 2: Relationships between quantity of Fe$_3$O$_4$, MnO and core loss, hysteresis loss, eddy current loss. (Fe$_3$O$_4$+MnO constant)](image)

![Figure 3: Relationships between contents of Bi$_2$O$_3$, and core loss, sintered density.](image)

Figure 4 shows the temperature characteristic of the core loss and table 2 shows a result of simulation of heat generation of each material used as deflection yoke of display. X106 is controlled composition of Fe$_3$O$_4$, MnO and ZnO, and contents of Bi$_2$O$_3$. H44 and H44F are our conventional materials. The heat generation is calculated for the distribution of magnetic flux density of a core computed by the magnetic moment method and core loss database[2].

![Figure 4: Temperature characteristic of core loss. (measured condition: f=100kHz, Bm=30mT)](image)

Table 2. Result of simulation of heat generation

<table>
<thead>
<tr>
<th>Material</th>
<th>E (unit)</th>
<th>E (65kHz)</th>
<th>E (100kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H44</td>
<td>3.78</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td>H44F</td>
<td>3.41</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>X106</td>
<td>3.24</td>
<td>3.79</td>
<td></td>
</tr>
</tbody>
</table>

4. CONCLUSION

1) As a method of reducing the core loss of Mg-Mn-Zn ferrite, it is effective to reduce a hysteresis loss by controlling ratio of MnO/(Fe$_3$O$_4$+MnO) and contents of ZnO.

2) The core loss can be reduced by addition of Bi$_2$O$_3$. Reduction of core loss is caused by increment of sintered density.

5. REFERENCES
