The Role of Technological Factors (Parameters of LPE) in Defect Generation and Formation of Properties of Magnetic Bubble Materials

V. Kostishyn, L. Letyuk, V. Medved’, A. Morchenko, V. Myzina

To cite this version:

HAL Id: jpa-00255078
https://hal.archives-ouvertes.fr/jpa-00255078
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Role of Technological Factors (Parameters of LPE) in Defect Generation and Formation of Properties of Magnetic Bubble Materials

V. Kostishyn, L. Letyuk, V. Medved', A. Morchenko and V. Myzina*

Moscow State Institute of Steel and Alloys (Technological University), Leninsky prospect, 4, Moscow, 117936, Russia

* Institute of General Physics, Russian Academy of Science, Vavilov Street, 38, Moscow, 117942, Russia

Abstract. It is shown that in a value range of molar parameter $R_S = 0.31 - 0.50$ the magnetic garnet films $(YSmLuCa)_s(FeGe)sO_{12}$ have overstoichiometric amount of Ca^{2+} ions. Their concentration grows with the increase R_S.

It is established that charge neutralization of excess Ca^{2+} ions is executed predominantly by $V^+_{O^2}$ and $V^-_{O^2}$ vacancies.

The contribution of oxygen vacancies in coercive force and magnetic anisotropy of films is determined.

1. INTRODUCTION

Magnetic garnet films with (Ca, Ge) substitution have high values of Curie point and domain wall mobility. Due to these properties such film are a perspective material for manufacture of logic and storing devices on magnetic bubbles. The operational parameters, as well as presence of defects of above-stated materials are in many respects defined by the technological factors of growth. The purpose of given work was study of influence of molar parameter R_S on properties and defectivity of magnetic garnet films with $(YSmLuCa)_s(FeGe)sO_{12}$ composition.

2. OBJECTS OF RESEARCHES AND EXPERIMENTAL TECHNIQUES

Films were fabricated by a method of liquid-phase epitaxy from a solution in flux PbO-B$_2$O$_3$ on the substrates Gd$_3$Ga$_5$O$_{12}$ with (111) crystallographic orientation. The molar parameters (molar ratios of components in the melt [1]) R_1-R_4 and R_5 were had similar values for all specimens. Parameter R_5 therewith varied and was equal: 0.31; 0.35; 0.48 and 0.50. The film growth rate ranges from 0.75 to 0.80 µm/min.

The coercive force H_c and field of effective magnetic anisotropy H_k were determined by standard techniques [1]. The difference between experimentally measured (H_c) and designed (H_e) values was defined as:

$$\Delta H_c = H_c - H_e,$$

where $H_c = H_0 + H_D - M_s$, H_0 and H_D are the growth- and stress-induced (caused by discrepancy of lattice parameters between film and substrate) components of uniaxial anisotropy, M_s is saturation magnetization.

For study of film defectivity the following methods were used: X-ray microscopic microanalysis, X-ray photoelectron spectroscopy (XRPES), X-ray diffraction, X-ray topography, thermostimulated conduction current in short circuit regime (TSCCSC) and polarization-optic technique. Microanalysis of samples has allowed to find out that the R_S value insignificantly influences the concentration of rare earth ions, Fe^{3+} ions and impurity ions of Pb^{2+} and Pt^{4+}, appearing during growth. At the same time, in all films without exception the presence of overstoichiometric Ca^{2+} ions was found out. As R_S increases from 0.31 to 0.50, the overstoichiometric Ca^{2+} concentration increases from 0.03 to 0.11 in formula unit.

3. RESULTS

Measurements of magnetic parameters of samples have found out that the increase of parameter R_S (representing of overstoichiometric Ca^{2+} concentration) brings to growth of values H_c and ΔH_c. The dependencies $H_c(R_S)$ and $\Delta H_c(R_S)$ are shown in fig.1. The increased values of H_c and H_e (in comparison with Ga-substituted compositions) are characteristic feature of magnetic garnet films of a (Ca,Ge)-system [1] and in doing so the nature of high values of this parameters is at present finally not established. The linear dependence between coercive force and molar parameter R_S ($R_S=0.03+0.625$) was received also by Hibiya T. with the co-authors [3] for $(YSmLuCa)_s(FeGe)sO_{12}$ and $(YEuTmCa)_s(FeGe)sO_{12}$ films.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:19971310
In this case the low-temperature peak corresponds to V_{o^2} vacancy (F$^+$-centre) and high-temperature one to V_{o^2} vacancy. In [3,7] it is supposed that the reason of high coercivity of magnetic garnet films of (Ca,Ge)-systems are oxygen vacancy. According to estimates on the basis of our data the concentrations of these vacancies constitute:

$N_{t_1}=5.0-7.2 \times 10^{18}$ V_{o^2} sm$^{-3}$; $N_{t_2}=5.5-7.8 \times 10^{18}$ V_{o^2} sm$^{-3}$ for composition with content of 0.03 redundant

Ca$^{2+}$ ions per formula unit (that corresponds to concentration 1.27×10^{20} sm$^{-3}$);

$N_{t_1}=1.5-2.2 \times 10^{19}$ V_{o^2} sm$^{-3}$; $N_{t_2}=1.3-2.5 \times 10^{19}$ V_{o^2} sm$^{-3}$ for composition with content of 0.1 redundant

Ca$^{2+}$ ions per formula unit (that corresponds to concentration 4.22×10^{20} sm$^{-3}$).

However, the concentration of V_{o^2} and V_{o^2} vacancies has not enough for complete charge neutralization of Ca$^{2+}$ ions. As far as XRPES have not found out the Fe$^{4+}$ ions and the p-centres O{$^-$}, in all probability, the part of redundant Ca$^{2+}$ ions passes in interstitial sites. It can promote precipitation of neutral oxygen vacancies (F-centres) into Ca$^{2+}$ ions. Their charge neutralization is executed predominantly by V_{o^2}- and V_{o^2}- vacancies. As one of variants of such clusterization, it is probably the formation of "vacancy pores" from F-centres about small groups of interstitial calcium ions [7]. A reasoning conducted for coercive force holds true and for anisotropy. When the oxygen vacancies have enough large concentration (up to 1×10^{21}/f.u.) and complete ordering, they can result to occurrence of uniaxial anisotropy with $K_{o^2}=5 \times 10^4$ J/m3, that is 2-3 times more than the value under observation [8]. Thus, the model of ordered distribution of oxygen vacancies is quite applicable for the explanation of ΔH_K growth with the increase R_S.

4. CONCLUSION

As a result of our researches it is established: a magnetic garnet films (YSmLuCa)(FeGe)O$_3$ at $R_S=0.31 \pm 0.50$ have the overstoichiometric content of Ca$^{2+}$ ions. Their charge neutralization is executed predominantly by V_{o^2}- and V_{o^2}- vacancies. Specified vacancies result in the increased values H_K and H_S of (Ca,Ge)-substituted films at Ca$^{2+}$/Ge$^{4+}>1$. In this case the growth magnetic anisotropy is stipulated by two factors: occupation of non-equivalent dodecahedral positions by rare-earth ions; oxygen vacancy ordering determined, obviously, by distribution of Ca$^{2+}$ ions.

References