Magnetic Properties of (CoFe2O4)-(Co-CoO) Composite Films for Perpendicular Magnetic Recording

N. Hiratsuka, K. Kakizaki, M. Sugimoto

To cite this version:

HAL Id: jpa-00255075
https://hal.archives-ouvertes.fr/jpa-00255075
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Magnetic Properties of (CoFe$_2$O$_4$)-(Co-CoO) Composite Films for Perpendicular Magnetic Recording

N. Hiratsuka, K. Kakizaki and M. Sugimoto*

Department of Functional Materials Science, Faculty of Engineering, Saitama University, 255 Shimo-Ohkubo, Urawa 338, Japan

* Department of Culture Information, Teikyo Heisei University, Uruido, Ichihara 290-01, Japan

Abstract: Cobalt ferrite films were prepared by facing targets sputtering, and then post-annealed at various temperatures (T_a=200-500°C) in air. Their magnetic properties and fine structure were investigated. A coercivity (H_c) measured in a perpendicular direction to the film surface of a film deposited at the oxygen gas pressure (P_{O_2}) of 0 mTorr and post-annealed at 300°C was 1.5 kOe. The value was 3.5 times greater than a coercivity (H_c) measured in a parallel direction to the film surface. This high coercivity ratio ($H_c/L/H_c$) showed that this film had the perpendicular magnetic anisotropy. It was investigated by the SEM observation that the perpendicular magnetic anisotropy was mainly caused by the columnar structure of the film. Moreover, the film was found to be made up of a (CoFe$_2$O$_4$)-(Co-CoO) composite by the XPS measurement of the binding energies of Co$_{3d}$ and Fe$_{3p}$ electrons of the film.

1. Introduction

The low noise magnetic recording media are required for high density recording system. It was reported that in a high density region the SNR of iron oxide recording media are higher than that of metal recording media [1-2]. Moreover, the oxide recording media have benefits such as long media lifetime, high resistance to damage and excellent corrosion. In these reasons, the barium ferrite thin film media have been studied for high density recording media [3-4]. But barium ferrite thin film media need high temperature annealing to crystallize. On the other hand, Cobalt ferrite thin film which has spinel structure is prepared with low temperature annealing. We therefore fabricated (CoFe$_2$O$_4$)-(Co-CoO) composite thin film media with high squareness, and investigated magnetic properties and fine structure of them.

2. Experimental

Cobalt ferrite films were prepared by a facing targets sputtering system. Targets were iron and cobalt metal plate with the Fe/Co ratio of 2. After the chamber was evacuated to a pressure below 2×10^{-2} Torr, the films were deposited on glass substrates at O_2 partial pressures (P_{O_2}) of 0 and 0.2 mTorr, and total pressure ($P_{O_2}+P_{Ar}$) of 15 mTorr. Applied power remained at 44 W during deposition. Then the films were post-annealed at various temperatures (T_a) ranging from 200°C to 500°C for 5 hours in air. The film thickness was in the range from 3000 to 5000 Å.

3. Results and Discussion

Figure 1 shows x-ray diffraction patterns of the films deposited at $P_{O_2}=0$ mTorr and post-annealed at various temperatures. The diffraction line from Fe(110) plane was observed for the as-deposited film. The CoFe$_2$O$_4$ phase crystallized with the increase of annealing temperatures. When the film annealed at $T_a=200$-300°C, α-Co and CoO phase coexisted with CoFe$_2$O$_4$ phase.

Figure 2 shows x-ray diffraction patterns of the films deposited at $P_{O_2}=0.2$ mTorr and post-annealed at various temperatures. CoO phase added with α-Fe phase was observed in the as-deposited film. CoO and Co phase crystallized at lower annealing temperature compare with the films deposited at $P_{O_2}=0$ mTorr.

Figure 3 shows annealing temperature (T_a) dependence of magnetization and coercivity measured in perpendicular direction to the film surface for the $P_{O_2}=0$ (▲,●) and 0.2 mTorr (△,○) films. The magnetization of the films of $P_{O_2}=0$ mTorr decreased with increase of T_a. Because a spinel phase was formed, instead of α-Fe phase which formed in an as-
deposited film. The coercivity of the films which annealed at 400°C were the highest. The hysteresis loop of the film deposited at Po2=0 mTorr and then annealed at T=300°C had excellent squareness of 0.78 (compensated with demagnetizing field).

Figure 4(a) and (b) show the cross-sectional views of the Po2=0 mTorr and 0.2 mTorr films post-annealed at 300°C, respectively. The Po2=0 mTorr film (a) had a good columnar structure. In contrast, the columnar structure was not observed clearly for the Po2=0.2 mTorr film (b). Therefore the strong perpendicular magnetic anisotropy of the Po2=0 mTorr film was due to this columnar structure.

Moreover, to investigate the fine structures of these films, the ion states of Co ions in the films were measured by XPS. Figure 5 and figure 6 show annealing temperature dependence of the binding energy of the Cozp electrons of the Po2=0 mTorr and 0.2 mTorr films, respectively. In the as-deposited films Co metal (Co2p3/2=778 eV) exists. The amounts of Co2+ ions increased with the increase of post-annealing temperature. In the Po2=0 mTorr film annealed at T=300°C which showed excellent perpendicular magnetic anisotropy Co metal coexists with large amounts of Co2+ ions. From this XPS spectrum and XRD pattern (fig. 1), it is considered that the Po2=0 mTorr film annealed at T=300°C was made up of a (CoFe2O4)-(Co-CoO) composite.

4. Conclusion

(1) The film deposited at Po2=0 mTorr and then annealed at T=300°C showed excellent perpendicular anisotropy.
(2) The origin of perpendicular magnetic anisotropy of the film was mainly shape anisotropy due to its columnar structure.
(3) The Po2=0 mTorr film annealed at T=300°C was made up of a (CoFe2O4)-(Co-CoO) composite.

References