Nanocomposites of the Barium Ferrite/\(\delta\)-Fe\(_{0}\)H System
I.-C. Tung, L. Perng, S. Wane, T. Chin

To cite this version:
I.-C. Tung, L. Perng, S. Wane, T. Chin. Nanocomposites of the Barium Ferrite/\(\delta\)-Fe\(_{0}\)H System. Journal de Physique IV Colloque, 1997, 07 (C1), pp.C1-743-C1-744. <10.1051/jp4:19971303>. <jpa-00255070>

HAL Id: jpa-00255070
https://hal.archives-ouvertes.fr/jpa-00255070
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nanocomposites of the Barium Ferrite/δ-FeOOH System

I.-C. Tung, L.H. Perng*, S.W. Wane and T.S. Chin

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, China
* Department of Chemical Engineering, Ta Hwa College of Technology and Commerce, Chung-Lin, Hsinchu, Taiwan, China

Abstract. Fine δ-FeOOH particles were introduced onto the surface of barium ferrite particles. The method was to coat the barium ferrite particles with Fe²⁺ solution first at certain concentrations, followed by addition of NaOH, and finally oxidized by 35 wt% H₂O₂. The results showed that the coercivity of barium ferrite could be lowered greatly to 2290 Oe and its magnetization could be sustained at a level higher than 45 emu/g. It indicates that there exists an interaction between barium ferrite and δ-FeOOH fine particles, which leads to the decrease in coercivity, and this interaction is a matter of interface and may not bear dependency on whether chemical bonding is formed between them.

1. INTRODUCTION

In resent years there has been growing industrial and academic interest in the development of barium ferrite (BF) due to its potential application in high density magnetic recording. For this application, Ti, Co, Mn...etc. have been doped into BF to reduce its coercivity (Hc). However, in doing so, saturation magnetization was greatly lowered and thus deteriorated its performance. The surface modification of BF particles by the formation of a Fe₃O₄ epitaxial layer has been tried by Kiyama et al. and Sadamura et al.[1,2] As reported for the modified BF particles, their coercivities decreased and magnetizations increased with the incorporation of Fe₃O₄ layers. In this work, we tried to introduce directly the fine δ-FeOOH particles, which exhibits a significant magnetization among ferric oxyhydroxides, onto the surface of the BF particles.

2. EXPERIMENTAL

Barium ferrite particles were firstly prepared by a salt-melt method according to our previous work.[3] They were typically hexagonal platelets with sizes 60-500 nm.

Fine δ-FeOOH particles were prepared in sequence by adding 1 M NaOH into 2 M Fe²⁺ solution, dropping 35 wt% H₂O₂ into the resulting solution, filtering, washing with deonized water and drying at room temperature.

δ-FeOOH coated BF was prepared in sequence by adding BF powders into a Fe²⁺ solution with various concentrations, viz. 1 M, 2 M, 3 M, 4 M and 5 M, taking BF particles out of the solution by a magnet enclosed by a thin PVC film, placing the particles on a Teflon plate by taking the magnet away from the film, dropping 35 wt% H₂O₂ onto the particles until no reaction was observed, filtering, washing with deonized water and drying at room temperature.

The crystal structure was identified by X-ray diffractionometry (XRD) using CuKα radiation. The particle morphology was examined by a transmission electron microscope (TEM). The magnetic properties were measured using a vibrating-sample magnetometer (VSM) with a maximum field of 2 T at room temperature.

3. RESULTS AND DISCUSSION

In Fig. 1, the diffraction patterns show that the pure barium ferrite and δ-FeOOH were obtained. Their magnetic properties are listed in Table 1. It is seen that the δ-FeOOH particles are superparamagnetic. When these δ-FeOOH fine particles move close to the surface of BF, they would be magnetized and attracted onto the BF surface under magnetic field of the BF.
The particle morphology of the surface coated BF with FeOOH fine particles is shown in Fig. 2. It can be seen that there is a thin layer of FeOOH covering the surface of BF. For the surface coated BF, since there is seldom possibility that strong chemical bonding at the interface between the BF and FeOOH can be formed by the room temperature process we adopted, the lowering of coercivity is a matter of interface interaction which leads to strong magnetic coupling. For comparison, the BF and FeOOH particles with a weight ratio 2:1 were also wet-mixed directly. The resulting saturation magnetization and coercivity were measured to be 50.2 emu/g and 2670 Oe, respectively. No chemical reaction between the BF and FeOOH particles is expected in this case. However, coercivity of BF can also be decreased by mixing with FeOOH. It is thus suggested that the decrease in coercivity caused by the magnetic coupling may not bear dependency on whether chemical bonding is formed.

Acknowledgments

This work was sponsored by the National Science Council of the Republic of China under grant NSC 85-2216-E-233-001.

References