Magnetic and Optical Studies of Structure of Co-Doped Bismuth-Iron-Garnet

T. Okuda, N. Adachi, H. Ohsato, Y. Katoh, T. Mima

To cite this version:

HAL Id: jpa-00255003
https://hal.archives-ouvertes.fr/jpa-00255003
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Magnetic and Optical Studies of Structure of Co-Doped Bismuth-Iron-Garnet

T. Okuda, N. Adachi, H. Ohsato, Y. Katoh and T. Mima

Section of Inorganic Materials, Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466, Japan

Abstract Using an alternating reactive ion sputtering technique, Co ion was doped in epitaxially growing Bi₃Fe₅O₁₂ garnet film. The intense enhancement of magnetization, coercivity, and optical absorption at 633 nm was observed. The Faraday hysteresis loop for slightly Co-doped film showed anomalous behavior. Those phenomena can be understood considering the composite film structure in which fine particles of Co₀.₅Fe₀.₅ spinel are embedded in epitaxially grown Bi₃Fe₅O₁₂.

1. INTRODUCTION

BiₓFeₓO₁₂ (BIG) is a magnetically soft ferrimagnet with garnet structure. For near infrared light, BIG is transparent and shows giant Faraday rotation (θ_F)[1,2]. It is well known that, in magnetic oxides, Co²⁺ ion occupies octahedral (O) site contributing large magnetocrystalline anisotropy which results in high coercivity and that tetrahedral (T) site Co²⁺ strongly induces optical absorption and Faraday rotation due to crystal field transition (A_g → T_g) at around the wavelengths of 0.7 and 1.5 µm. These modification effects due to Co²⁺ ion are also expected in BIG, which are worth investigating from both viewpoints of fundamental research and application of BIG. On the Co-doped BIG films prepared by reactive alternating ion beam sputtering, we have reported the enhancement of magnetization and coercivity and the different values of coercivity derived from the θ_F hysteresis loops measured at different wavelengths, 633 nm and 1.5 µm[3]. The results of further investigation will be described.

2.EXPERIMENTAL

The films were deposited onto the (111) oriented Gdₓ(ScGa)₂O₁₂ garnet substrates kept at 500 °C in an oxidizing atmosphere by alternatingly sputtering the two ceramic targets T_A (=BIG=3Bi₂O₅·5Fe₂O₅) and T_B (=CoO) using Ar ion beam[3]. The sputtering time fraction R_ST=t_A/(t_A+t_B) was varied from 0 to 1. t_A and t_B are sputtering time in one period for respective targets. t_A was varied from 0 to 9 min and t_B fixed at 1 min. The total sputtering time of each run was set at 600 min. The films were characterized at room temperature using X-ray diffractometer (XRD), AFM (atomic force microscope), vibrating sample magnetometer (VSM), infrared and visible spectrometer, and Faraday rotation spectrometer.

3.RESULTS AND DISCUSSION

In the range of 0<R_ST<1, no indication of periodic layered structure was found in XRD peaks measured at low and high diffraction angle. BIG/CoO layered structure will be hardly formed because of high substrate temperature. In the range of 0.833<R_ST<1, main phase is epitaxially grown garnet phase (G). At R_ST=0.833, (111) oriented spinel phase (S) appears infrequently. In the range of 0≤R_ST≤0.75, G-phase, BiFeO₃, and Bi₂Fe₃O₇ do not appear, but S-phase and some unidentified phases are frequently observed. From these facts, we can deduce that, in the range 0≤R_ST≤0.8, S-phase is the main and G-phase does not grow if R_ST≤0.75.

In the range of 0.5≤R≤1, the specimens are ferromagnetic at room temperature. As shown in Fig.1, R_ST dependence of the...
C1-712 JOURNAL DE PHYSIQUE IV

- Applied magnetic field I to Rim plane
- Applied magnetic field I to film plane

Filled circles and squares represent the films in which garnet phase was detected.

<table>
<thead>
<tr>
<th>Fig.1</th>
<th>Room temperature saturation magnetization of Co-doped BIG films vs. R_{ST}.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.2</td>
<td>Optical absorption coefficient of Co-doped BIG films at 633nm vs. R_{ST}.</td>
</tr>
<tr>
<td>Fig.3</td>
<td>Faraday rotation θ_{F} and magnetization hysteresis loops of the sample of $R_{ST}=0.9$. θ_{F} was measured at 633nm.</td>
</tr>
</tbody>
</table>

saturation magnetization M_s measured at room temperature has a prominent peak at $R_{ST}=0.75$ and the peak value of 300 emu/cc is about twice of that of BIG. Existence of G- or S-phases was not confirmed by means of XRD. The coercivity H_c increases monotonically with decrease of R_{ST}. At $R_{ST}=0.9$ and 0.5, H_c are 1 and 1.8 kOe, respectively. R_{ST} dependence of M_s can not be understood by the substitution of Co$^{3+}$ for Fe$^{3+}$ in G-phase. It will be natural to consider the formation of ferromagnetic phase with high M_s other than G-phase. The most plausible phase is S_{ETF}-phase, Co$_x$Fe$_{2-x}$O$_4$ whose M_s increases monotonically as x which may be proportional to R_{ST} increases. The room temperature M_s of CoFe$_2$O$_4$ is 320 emu/cc. The volume fraction of S_{ETF}-phase in a film and Co-content in S_{ETF}-phase decrease as R_{ST} increases, which may explain R_{ST} dependence of M_s.

The crystal structure of either G- and S-phases contains T- and O-sites. The crystal field transition of Co$^{2+}$ at the T-site, which is allowed one, results in optical absorptions at wavelengths of 0.6, 1.4 and 2.5 μm. The absorption measured at 633nm shown in Fig.2 decreases monotonically and intensely as R_{ST} increases, which suggests that this absorption is caused by Co$^{2+}$ on the T-site in S_{ETF}-phase, since Co$^{2+}$ is hardly introduced into G-structure. In S-structure, Co$^{2+}$ substitutes preferentially at O-sites, however, small amount of Co$^{2+}$ at T-sites in S_{ETF}-phase may cause strong absorption because the transition is allowed.

In a film containing small amount of Co$^{2+}$, a peculiar behavior of θ_{F} hysteresis loop measured at 633nm was observed. As shown in Fig.3, the sign of θ_{F} changes before the applied field decreased from saturation to 0 Oe. The hysteresis loop measured in the same field range strength using VSM shows step-like change. These can be understood by exchange coupling effect between magnetically soft BIG of giant θ_{F} and magnetically hard S_{ETF}-phase.

4. CONCLUSION

We can deduce that the films of $R_{ST}=0.9$ are composites in which fine particles of S_{ETF}-phase which are hardly detected by XRD because of the small size and volume fraction are embedded in epitaxially grown BIG films.

References