H2 Evolution Reactivity of Carbon-Bearing Ni(II) Ferrite (CBNF)
N. Hasegawa, M. Kojima, M. Tsuji, Y. Tamaura

To cite this version:

HAL Id: jpa-00254990
https://hal.archives-ouvertes.fr/jpa-00254990
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
H₂ Evolution Reactivity of Carbon-Bearing Ni(II) Ferrite (CBNF)

N. Hasegawa, M. Kojima, M. Tsuji and Y. Tamaura

Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152, Japan

Abstract: Two-step water-splitting with a carbon-bearing Ni(II) ferrite (CBNF) at 300°C has been studied. The chemical analysis of the solid phase showed that the CBNF was gradually oxidized during repeated water splitting, but the evolved H₂ amount is 1.5-2 times larger than that expected from the oxidation of the CBNF. Following two types of hydrogen evolution reactions are considered to be participated: Type I is the water splitting by the activated form of CIO layer (β₀), where the activated form changes to the original form (β₀), Type II is hydrogen evolution by the oxidation of CIO layer, where the original CIO layer form (β₀) changes to an oxidized form (β₁). The amount of released oxygen was about 40-80% of the amount estimated from the amount of hydrogen gas evolved by the Type I reaction. Thus, the stoichiometry of the above two steps has been demonstrated.

1. Introduction

We have found that a carbon-bearing Ni(II) ferrite (CBNF) is composed of bulk Ni(II) ferrite and carbon iron oxide layer (CIO layer) on the surface [1,2], so a CBNF is referred to as CIO-layered Ni(II) ferrite (CIO-NF). The CIO layer is activated in O₂-free inert gas at 300°C (activation step), and the activated form react with steam to form H₂ (H₂ evolution step). The carbon content of the CIO layer did not change during water-splitting cycles, indicating that any carbon compounds were not released. The evolved H₂ amount is 1.5-2 times higher than the oxidation of the solid phase. We have considered that there are two types of the H₂ evolution; 1) the oxide ion in the CIO-layer (β₀) (n = repetition number) is released as O₂ gas in the activation step, and the CIO layer changes to a more reduced form (CIO-layer(β₀)), and decompose H₂O to generates H₂ gas, 2) H₂ is generated by the oxidation of the CIO layer to a slightly oxidized form of CIO-layer (β₁) without O₂ releasing step.

\[
\begin{align*}
\text{Type I} & \quad \text{CIO-layer(β₀)} = \text{CIO-layer(α₀)} + 1/2 \text{O}_2, \\
\text{CIO-layer(α₀)} + \text{H}_2\text{O} & = \text{CIO-layer(β₀)} + \text{H}_2 \quad (1) \\
\text{Type II} & \quad \text{CIO-layer(β₀)} + \text{H}_2\text{O} = \text{CIO-layer(β₁)} + \text{H}_2. \\
\end{align*}
\]

The purpose of this paper is to prove the Eqs. 1 - 3 by measuring the O₂ amount released in the activation step (Eq. 1) and the stoichiometry of the H₂ evolution in the 2-step water splitting will be discussed in relation to a reaction mechanism of the oxygen releasing in Eq. 1.

2. Experimental

A CIO-NF was synthesized by repeated CO₂ decomposition on H₂-reduced Ni(II) ferrite according to the previous paper [1]. The 0.5g of sample was placed in the reaction cell, and Ar gas was passed through the sample at 300°C (activation step). The oxygen gas, which was released from the CIO layer during activation step, was trapped with Cu powder at 400°C and the trapped oxygen amount was determined with mass spectroscopy as H₂O by passing H₂ gas through the Cu powder at 400°C. Then, 25 ml of water was injected into the steam generator, and the sample was allowed to react with steam. The evolved gases were monitored with mass spectroscopy.

3. Results and discussion

A typical H₂ evolution profile by the reaction of the CIO-NF with H₂O at 300°C is shown in Fig. 1. When the steam (H₂O) was passed through the sample at a first time, a larger peak (Peak a) appeared, then the smaller Peaks b and c appeared successively by passing the steam every after 5 min. The areas of Peaks b and c were nearly equal, but smaller than that of
Peak a. However, a larger Peak d appeared again, when the steam was passed after allowing the sample to stand in Ar stream for 1.5 h. Thus, there were two kinds of the H2 generation peaks: 1) small peaks by successively passing H2O every after 5 min, and 2) a larger peak (Peak d) by passing H2O after 1.5 h of the activation. Since, Peaks b and c appeared by passing H2O successively every after 5 min, the O2 gas evolved from CIO layer is very small, indicating that Peaks b and c appeared without the O2 gas releasing from CIO layer. Thus, the H2 evolution for Peaks b and c (smaller peaks) mainly comes from the Type II (Eq. 3) reaction, where the CIO layer reacts with H2O without O2 releasing step. This means that the CIO layer is more oxidized by the amount equivalent to the evolved H2 gas amount, and CIO-layer(βc) is oxidized to CIO-layer(βc+1). However, if the CIO layer is subjected to the O2 releasing step to the amount expected from Eq. 1 every time after the H2 evolution, we can obtain the H2 gas by 2 step water splitting of Eqs. 1 and 2 with a minimal oxidation of the CIO layer. A larger Peak d may be come from O2 releasing from CIO layer described as Eq. 1. Being thus activated CIO layer reacted with H2O, it is oxidized to generate the H2 gas by the reactions of Eqs. 2 and 3, although the reactions 2 and 3 practically take place at the same time and can not be distinguished. Thus, the evolved H2 amount of Peak d is the sum of the H2 volume evolved by Eqs. 2 and 3. In the present study, the H2 of (Peak d - Peak c) is considered to correspond to the H2(Eq. 2). A ratio of oxygen amount detected during an activation step to the amount expected from H2 (Peak d - Peak c) ranges 40-80%. This suggests that the 2-step water splitting of Eqs. 1 and 2 proceeds stoichiometrically. The ratio of H2(Eq. 2) to H2(Eq. 3) is calculated to be 0.67-1.0.

Figure 1: H2 evolution profile by the reaction of CIO-NF and H2O at 300°C

The release of oxide ion in the CIO layer as O2 gas in a low-oxygen content gas only at 300°C seems to come from the specific structure of the CIO layer. The CIO-NF is represented by (Ni0.30Fe2.70O4)x, (Ni2+0.69Fe2+2.30O5)xN0.28, where x=0.249; mol fraction of CIO layer, τ=0.280; carbon content [1]. Thus, the general formula of the CIO layer is represented by the wustite structure (MO), and that of the bulk by spinel structure (M2O3). The Fe3+ ion in the MO structure (FeO) is unstable below 600°C, and can decompose H2O to form H2 and Fe2O3. However, Fe2O3 is too stable to released oxide ions in O2-free Ar gas at 300°C. Therefore, the Fe3+ ions in the CIO layer are not in the pure form of MO structure. Considering the chemical composition of the CIO layer, some metallic Ni or Fe should be formed in the CIO layer in the activation step, since the Fe3+ or Ni2+ ions in the CIO layer should be reduced by releasing O2- ions as O2 gas. To confirm the existence of the metallic component, the surface of the activated CIO layer was treated with a nitric acid solution, which can dissolve metallic Ni to form NO. The NO was determined by colorimetry as NO2- ion. This indicates that some Ni2+ ions would be reduced to metallic Ni in the activation step. That is, the CIO-layer(αc) is considered to consist of metallic Ni along with Ni2+, Fe3+, C and O2-. Since nickel oxide powder itself did not release O2- in a flow of Ar gas at 300°C, the reduction of Ni2+ ion would not be attributed to the reduction of nickel oxide. Rather, the specific chemical structure of the CIO layer would facilitate the release of the O2- ions to reduce the Ni2+ ions. Especially, the coexistence with carbon would take an important role for the release of the O2- ions. The driving force will be considered as follows: some of carbon of graphite will be bonded weakly to Ni2+, which would be similar to Ni-C carbide bond. When the CIO layer was heated over 350°C, some weak carbide peak appeared in XRD pattern, while no such peak appeared at 300°C. This suggests that this weakly bonding Ni2+-C (X in Fig. 2) become stronger in an O2-free atmosphere at 300°C and that O2 gas can be released to from the CIO layer at 300°C.

References