High Temperature Removal of H2S over Iron Oxide Supported on SiC Sorbent
C. Pham-Huu, C. Estournes, B. Heinrich, C. Crouzet, M. Ledoux

To cite this version:

HAL Id: jpa-00254989
https://hal.archives-ouvertes.fr/jpa-00254989
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
High Temperature Removal of H_2S over Iron Oxide Supported on SiC Sorbent

C. Pham-Huu, C. Estournes*, B. Heinrich, C. Crouzet and M.J. Ledoux

Laboratoire de Chimie des Matériaux Catalytiques, ECPM, University Louis Pasteur, 1 rue Blaise Pascal, 67008 Strasbourg cedex, France
* Groupe des Matériaux Inorganiques, ECPM, University Louis Pasteur, 1 rue Blaise Pascal, 67008 Strasbourg cedex, France

Abstract.

A new material, Fe_2O_3 supported on high specific surface area SiC, is very efficient for the H_2S removal from hot exhaust gas. The specific properties of the silicon carbide allows a very large number of sulfidation/regeneration cycles.

1. INTRODUCTION

H_2S is produced in large amounts from the gasification of coal and also from many other industrial processes: pyrolysis, cracking, hydrocracking and hydrotreatment. The purification of the exit gas to remove H_2S is essential prior to subsequent utilization. The solid sorbents used for high temperature H_2S removal are widely investigated in the literature [1-3] which mainly deals with calcium oxide, zinc oxide, zinc ferrite or zinc titanate in an unsupported form. However, during the absorption and regeneration cycles a contraction (sulfidation) and an expansion (oxidative regeneration) occur and lead to sorbent deterioration and sintering. This is followed by a pressure drop across the bed due to the attrition of the material, reducing its H_2S removal capacity. These phenomena can be avoided by replacing the unsupported sorbent by a supported one [4,5]. Silicon carbide is well known to be an efficient heat conductor, with a high thermal resistance and a high mechanical strength, which can be efficient for the use of this material as a support for high temperature H_2S removal. In addition, silicon carbide is a chemically inert material which cannot interact with the active phase by destroying its sorbent capacity as is the case for alumina support [5].

The aim of this article is to report the preparation, the characterization and the performance of Fe_2O_3/SiC solid sorbent for high temperature H_2S removal and its stability as a function of absorption-regeneration cycles.

2. EXPERIMENTAL

The silicon carbide is synthesized by a gas-solid reaction, under dynamic vacuum, between a vapor of SiO, generated by a mixture $\text{Si} + \text{SiO}_2$, and a high surface area activated charcoal as described in detail elsewhere [6]. The SiC obtained by this method has a surface area of 25 m2 g$^{-1}$. The sorbent is prepared by incipient wetness impregnation of the SiC with an aqueous solution of iron nitrate. After impregnation the sorbent is dried at room temperature for 12h and then calcinated at 400°C for 2h.

The H_2S removal experiment is performed in a flow micropilot working at atmospheric pressure and on a fixed bed. The composition of the reactant mixture is constant and contains H_2S (0.5 vol. %) and balance helium. The products from the reactor unit are analyzed on-line by gas chromatography, which allows the separation of H_2S, H_2O and SO_2. The regeneration is performed at 650°C in flowing air for 2h.

3. RESULTS AND DISCUSSION

The amount of iron oxide measured by atomic absorption spectroscopy is 15 wt. %. The surface area of the calcined sorbent (Fe_2O_3/SiC) measured by N_2 adsorption is 45 m2 g$^{-1}$ with the pore size distribution centered between 4 and 10 nm. The iron oxide is finely and homogeneously dispersed on the support and no diffraction lines corresponding to iron oxide are observed. The presence of small iron oxide particles on the sorbent is also confirmed by magnetic measurements (Fig. 1) which show the presence of magnetic compounds and the lack of the magnetization saturation (existence of small magnetic particles).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:19971277
The H2S removal capacity obtained at 400°C on Fe2O3/SiC is presented in Fig. 2. The H2S removal is almost complete during the first 300 minutes of absorption and only water is detected at the exit of the reactor. At that point, the concentration of H2S starts to rise rapidly to the inlet value of around 6200 ppmv of H2S. The sulfur capacity breakthrough is around 90-95% of the theoretical capacity assuming the transformation Fe2O3 → FeS.

The H2S removal capacity obtained at 400°C on Fe2O3/SiC is presented in Fig. 2. The H2S removal is almost complete during the first 300 minutes of absorption and only water is detected at the exit of the reactor. At that point, the concentration of H2S starts to rise rapidly to the inlet value of around 6200 ppmv of H2S. The sulfur capacity breakthrough is around 90-95% of the theoretical capacity assuming the transformation Fe2O3 → FeS.

Figure 1: Magnetic measurement of the fresh sorbent after calcination at 400°C for 2h.

Figure 2: H2S removal capacity as a function of the sulfidation-regeneration cycle on the Fe2O3/SiC sorbent at 400°C and with a space velocity of 1200h⁻¹.

The stability of the sorbent as a function of the absorption and regeneration cycles is reported in Fig. 2. The reactor is flushed with helium between reactions. As shown from the results no change in the H2S removal capacity occurred after four cycles. The surface area of the sorbent after the set of experiments decreased slightly to 17 m²g⁻¹ after the second cycle and then remained unchanged for the rest of the experiments. The high stability of the sorbent is attributed to the high thermal conductivity of the silicon carbide support which prevents the formation of hot spots during the regeneration, hot spots which can be responsible for a drastic sintering of the active phase.

Acknowledgements

The present work is supported by the Pechiney Company. The magnetic measurements were performed in the Groupe des Matériaux Inorganiques (IPCMS, UMR 46 of the CNRS).

References