On the Magnetisation by Spin Rotation in Dense or Heterogeneous Soft Magnetic Materials

To cite this version:

HAL Id: jpa-00254897
https://hal.archives-ouvertes.fr/jpa-00254897
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the Magnetisation by Spin Rotation in Dense or Heterogeneous Soft Magnetic Materials

P. Le Fur, A.M. Kimm*, P. Laurent*, M. Le Floc’h*, F. Le Floc’h** and P. Binon***

I.S.E.M., Place Georges Pompidou, 83000 Toulon, France
* Laboratoire d’Électronique et des Systèmes de Télécommunication (UMR 1329) - UFR Sciences, BP. 809, 6 avenue Le Gorgeu, 29285 Brest cedex, France
** URA 322 du CNRS, UFR Sciences, BP. 809, 6 avenue Le Gorgeu, 29285 Brest cedex, France
*** SAGEM/Ferrites, 03106 Montluçon cedex, France

Abstract: Results of the literature seem to be consistent with our experience of the soft magnetic composite materials to advance that they magnetize by spin rotations rather than by domain wall motions. We have thus proposed to express the effective magnetic susceptibility as varying with the magnetic fraction through a parameter of microstructural origin (N), and a factor connected to the magnetic character of the substance (x0). This work shows that x0 may be represented by xrot (rotational magnetization), and not by the susceptibility of the bulk matter. Some compositions of ferrites (Ni-ferrites, YIG) for which xrot was known, gave a good confirmation of the above assumption. For other materials, it was necessary to determine xrot experimentally. The technique used is described briefly. It has been successfully tested on the ferrites mentioned above. Owing to this calibration, the apparatus is ready now to measure xrot on various dense magnetic matters before they are ground then mixed with resin to be investigated as a function of the magnetic fraction of the composite materials, as a function of the volume fraction C of the magnetic phase, has been proposed and successfully tested experimentally [1]. The relation based on an “average field” assumption is given below:

\[(1 - N)x^2 + [1 + (N - C)x_1]x - Cx_1 = 0\] (1)

N characterizes the average demagnetizing effect in the measurement direction, and x1 (the subject of the paper) is introduced to take the intrinsic properties of the magnetic part into account. Eq.(1) agrees surprisingly with experimental data provided the rotational susceptibility xrot (Snoek’s law-type relation) was preferred to the “bulk susceptibility” to play the role of x1. Fig. 1-a gives two examples, one for pure iron (ferromagnetic particles of 3 μm), the other for YIG (ferromagnetic particles of 40 μm). The better fit between experimental values and those derived from Eq.(1), has led to keep x1 = 25 (N= 0.25) for iron, and x1 = 12 (N= 0.25) for YIG. By another way, studies concerning the natural spin resonance on one hand, and the quasi-static susceptibility as a function of the grain sizes in bulk polycrystalline YIG on the other hand [6,7], have shown that the rotational susceptibility was equal to 12. Unfortunately, we have no equivalent informations for iron, but the use of the Snoek’s relation (xrot = 123/31μK1) with K1 = 2.16 T and K1 = + 4.2*104 J.m-3 [8] gives 29 (to compare with the result of Fig. 1-a). Fig. 1-b shows how the nature of the magnetic phase can act on the magnetic behaviour of the composite material. - 1: x1 varies in a wide range - 2: The Ni-ferrite composite has a low x1 in agreement with the low xrot of the bulk material (xrot = 4 [9]) - 3: The Super-Sendust
composite (metallic alloy with 87.3% Fe, 4.2% Al, 5.3%Si and 3.2%Ni) known and used in industrial applications for its particularly low anisotropy has the highest \(\chi_i \). Can \(\chi_i = \chi_{rot} \) be considered as a general relation?

Can \(\chi_i = \chi_{rot} \) be considered as a general relation?

\[\chi_i = 25 \]

IRON (3 \(\mu \)m)

\[\chi_i = 12 \]

YIG (49 \(\mu \)m)

\[20 0 20 \] C (%)

\[0 10 \] M (kA/m)

Fig. 1 - Comparison between theory (Eq. 1) and experimental results for different kinds of magnetic matters: \(\chi_i \) follows the variations of \(\chi_{rot} \).

Many different compositions in soft ferrites exist which could give an access to a wide range of different values of \(\chi_{rot} \). Actually, the lack of data concerning this parameter has led us to imagine a technical procedure in order to extract the rotational part from the total susceptibility of sintered samples. The principles of the method are presented in the following section.

Fig. 2 - (a): Magnetization curves in both the “easy” (ring circumferences) and “hard” (revolution axis of the flat sample accurately inserted in a high permeability magnetic circuit) directions for a polycrystalline soft ferrite obeying the “magnetic-ring concept [6]@): On ordinary materials, magnetic domains develop in any direction. Magnetization in the axial direction contains domain wall contributions which can easily be canceled by a stress \(\sigma \) applied in the ring directions. This technique is a good way to separate the mechanisms and approach the rotational magnetization.

Many works have been dealt with the study of the magnetization processes along the circumferences of ring-shaped ferrites. All of them concluded that in materials of high microstructural quality, the 180° domain walls spontaneously acquired a ring-like distribution [6]. Starting from this idea that all the magnetic moments are effectively aligned along the circles of the sample, a magnetic field applied in the revolution axis (perpendicular direction), must be able to rotate the moments so that \(\chi_{rot} \) becomes accessible directly. In this way, the flat ring sample is accurately inserted in the air-gap of an alternating electromagnet of high intrinsic permeability. The susceptibility is measured by a classical flux method from the analysis of the magnetization curve from the zero magnetization to saturation. Fig. 2-b illustrates the difference typically observed between magnetization in the so-called “easy-direction” (ring lines) and magnetization in the “hard direction” (revolution axis). In fact, actual materials, even with a good microstructure (defect-free grains), have not exactly the ideal domain wall configuration mentioned above. It is then necessary to use a compressive stress \(\sigma \) applied along the ring lines to improve the toroidal alignment [10]. The decrease of susceptibility easily visible in Fig. 2-b comes from the stress application. In fact, it corresponds to the removal of the domain wall contribution. For \(\sigma = 16 \) MPa, the rotational behaviour can be considered as reached (Note that the susceptibility takes then the expected value). The method has been also tested on Ni-ferrites. The results found on this type of materials \(\chi_{rot} = 4 \) is in good agreement with those of the literature [9] and also with Fig. 1-b. In the future, the technique will be applied at various ferrites and magnetic metals before they are transformed in composites to continue to test the validity of Eq.1.

References.