Influence of Small Addition of Ti4+ Ions on the Properties of High Permeability Ferrite

J. Neamtu, M. Toacsen, D. Barb

To cite this version:

HAL Id: jpa-00254850
https://hal.archives-ouvertes.fr/jpa-00254850
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of Small Addition of Ti⁴⁺ Ions on the Properties of High Permeability Ferrite

J. Neamtu, M.I. Toacșen* and D. Barb*

Institute of Microtechnology, P.O. Box 38-160, Bucharest, Romania
* Institute of Physics and Technology of Materials, P.O. Box M6-7, Bucharest, Romania

Abstract. Mn-Zn ferrites substituted with Ti⁴⁺ ions are now becoming commercially important. The substitution with titanium ions in Mn-Zn ferrite is recommended for ferrites with low losses and low temperature factor of initial permeability, μ_i, because of the shift of the secondary maximum of permeability, SMP, towards lower temperatures [1] and the increase of the d.c. resistivity [3,4,5].

The present paper reports the results obtained by substitution of a small amount of titanium ions to high permeability ferrite $Mn_{0.51}Zn_{0.43}Fe_{2+0.06}Fe_2O_4$, by adequate reduction of Zn^{2+} content. The magnetic and electric properties improve: d.c. electrical resistivity increases while the loss factor $\tan \delta/\mu_1$ and disaccommodation decrease. By addition of 0.35% by weight TiO₂, the initial permeability, at 20°C, improves. We remark the flattening of $\mu_i(T)$ curves with the increase of content of Ti⁴⁺ ions and the diminution of the peak at the Curie point, facts that can be associated with two points of anisotropy compensation instead of one, the second minimum of K_1 being in the neighborhood of T_c.

Structural and magnetic properties of high permeability ferrite with substitution of titanium ions confirm that Ti⁴⁺ ions make pairs with Fe³⁺ ions.[4, 6].

1. INTRODUCTION

High permeability ferrite is obtained in a relatively small percentage range of the Mn-Zn ferrite system [2] and the raw materials must be of adequate purity, usually a total content of impurity must be $\approx 0.1\%$g[1,2]. On the other hand, the substitution of Ti⁴⁺ ions in Mn-Zn ferrite is recommended for the ferrite characterized by low losses and low T_K/H_1, because of the increase of d.c. resistivity and the shift of SMP towards lower temperatures, $-100^\circ C/1mol$ TiO₂ [2,3]. A particular feature of the substitution with titanium is that the nature of the disaccommodation process is modified, giving a pronounced improvement in the long-term stability [4]. The present paper reports the results obtained by addition of small amount of TiO₂ (0.1-1% by weight) to high permeability ferrite. For 0.35% by weight TiO₂, initial permeability, at 20°C, improves.

2. EXPERIMENTAL

The ferrite $Mn_{0.51}Zn_{0.43}Fe_{2+0.06}Fe_2O_4$ and the same ferrite with the additions of Ti⁴⁺ ions were prepared by the usual ceramic technique. Appropriate mixtures of commercial oxides Fe₂O₃, ZnO, Mn₃O₄ and TiO₂ were pre-fired at 850°C, milled in demineralized water and granulated. After pressing, the toroids were all sintered at 1350°C in air and cooled in a nitrogen atmosphere with less 0.1% O₂ [7]. For quick reference, the sample without titanium ions was denoted A, the sample with 0.35%g TiO₂ was denoted A₁, the sample with 0.67%g TiO₂ was denoted A₂ and the sample with 1.02%g TiO₂ was denoted A₃. The sintered samples are in accordance with the general formula: $Mn^{2+}_xFe^{2+}_{2-x}Ti^{4+}_{2-x}Fe^{3+}_{2+2x}O_{4+y}$ where $x=0.01, 0.02, 0.03$. The initial permeability and relative loss factor were measured at 1-100 kHz using a Maxwell bridge. The disaccommodation factor was obtained from the inductance change in 10 and 100 min. after 50 Hz ac demagnetization. The d.c resistivity was measured with indium-gallium contacts. The initial permeability and relative loss factor (at 10 kHz) versus temperature within the range $-150^\circ C+150^\circ C$ were measured, using a constant temperature chamber, to ensure that the samples would be in thermal equilibrium.

3. RESULTS AND DISCUSSION

The curves $\mu_i(T)$, figure 1a, show two characteristic phenomena. The first one is the shift of secondary maximum of permeability towards lower temperatures with the increase of titanium ions amount. The shift of SMP is approximately $-50^\circ C$ and $-60^\circ C$ per 1mol TiO₂ addition. The second characteristic is the flattening of $\mu_i(T)$ curves with the increase of Ti⁴⁺ ions. This flattening of curves could be explained by the existence of two points of anisotropy constant compensation. We remark two minimums on the $tg\delta/\mu_1$ vs. temperature curves (fig. 1b) only for the samples of ferrites substituted with Ti⁴⁺ ions. These results are in accordance with the paper [5]. Stijntjes et al showed that in a material without magnetocrystalline anisotropy or at zero crossings of anisotropy, one expects a minimum of hysteresis loss and residual loss.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1997120
Fig. 1a: Initial permeability at 10 kHz vs. Temperature

Fig. 2a: SEM of ferrite with 0.35%g TiO₂

Fig. 1b: Loss tangent/initial permeability vs. Temperature

Fig. 2b: EDAX analysis of ferrite with 0.35%g TiO₂

This study shows that the substitution of small amount of Ti⁴⁺ ions can lead to the improving of magnetic properties of high permeability ferrite. The experimental data indicate that addition of TiO₂ less than 0.5% by weight will yield optimum disaccommodation and temperature factor of μ₁ and reduced factor t₟/μ. By the addition of 0.35%g TiO₂, the initial permeability at room temperature increases.

The experimental results show that Ti⁴⁺+Fe³⁺ ions contribute to the anisotropy constant K₁ with a positive and weakly dependent temperature value, in good agreement with [4, 6]. We remark the flattening of μ(T) curves with the increase of content of Ti⁴⁺ ions and the diminution of the peak at the Curie point, facts that can be associated with two points of anisotropy compensation instead of one, the second minimum of K₁ being in the neighborhood of Tc.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ti⁴⁺ ions (x)</th>
<th>1kHz</th>
<th>20kHz</th>
<th>50kHz</th>
<th>100kHz</th>
<th>μ₀</th>
<th>ρ×10⁻²</th>
<th>DAF×10⁻⁶ (at 20°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.00</td>
<td>1.6</td>
<td>5.0</td>
<td>18</td>
<td>32</td>
<td>15</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>A₁</td>
<td>0.01</td>
<td>1.5</td>
<td>3.0</td>
<td>6</td>
<td>11</td>
<td>260</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>A₂</td>
<td>0.02</td>
<td>2.5</td>
<td>5.0</td>
<td>8</td>
<td>12</td>
<td>500</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>A₃</td>
<td>0.03</td>
<td>3.8</td>
<td>5.5</td>
<td>9</td>
<td>14</td>
<td>900</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

4. CONCLUSION

References