Magnetic Properties of PbFe12O19 Hexaferrites Powders Obtained by Metallorganic Decomposition

To cite this version:

HAL Id: jpa-00254776
https://hal.archives-ouvertes.fr/jpa-00254776
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Magnetic Properties of PbFe\textsubscript{12}O\textsubscript{19} Hexaferrites Powders Obtained by Metallorganic Decomposition

S. Diaz, N. Suárez, J.C. Faloh, J.L. Sánchez, F. Leccabue*, B.E. Watts* and G. Albanese**

Facultad de Fisica/IMRE, Universidad de La Habana, La Habana 10400, Cuba
* Istituto MASPEC/CNR, Via Chiavari 18/A, 43100 Parma, Italy
** Dipartimento di Fisica, Università di Parma, v. le delle Scienze, 43100 Parma, Italy

Abstract. Magnetoplumbite (PbFe\textsubscript{12}O\textsubscript{19}) powders were obtained by the thermal decomposition, at 900 °C of nitrates dissolved in ethylene glycol. The hysteresis loops showed that the predominant magnetisation mechanism is coherent rotation and a remarkably high value of coercivity (5 kOe) was obtained. Cell parameters, Curie temperature and hysteretic properties are reported. A study of the magnetic after effect is also presented. The results are compared with those obtained for Sr-M sintered compacts with submicronic particles obtained from chemically coprecipitated powders. The dependence of the viscosity coefficient (S) and the viscosity parameter (Sv) on the applied magnetic field were determined at temperatures between 77 and 300 K.

1. INTRODUCTION

The preparation of Ba- and Sr-M hexagonal ferrites using the metallorganic decomposition method (MOD) has been reported by [1,2]. The main advantages of this route are a lower crystallisation temperature for the process and the possibility of preparing submicronic particles with a coercivity suitable for recording applications. Preliminary studies of the synthesis Pb-M hexaferrites using this route have been presented previously [3-5]. The present work intends to review the magnetic and crystallographic data for Pb-M (PbFe\textsubscript{12}O\textsubscript{19}) powders obtained by MOD. In addition the time dependence of the magnetisation was measured between 75 and 300 K in order to determine magnetic viscosity and viscosity parameter in these materials.

2. EXPERIMENTAL PROCEDURE

The MOD method is described by Surig et al. [1]; a solution of Pb2+, Fe3+ nitrates in ethylene glycol is heated to induce a polymerisation and subsequently a pyrolysis to remove the organic material. The precursor obtained was heated in air to 920 °C for 2 h to form the hexaferrite.

X-ray powder spectra were recorded using CoK\textalpha radiation (\lambda = 1.789 Å) with a Philips PW 1050/25 diffractometer. The magnetic properties were measured using an Oxford model 3001 vibrating sample magnetometer (H\textsubscript{max} = 16 kOe), with low and high temperature facilities. Magnetic viscosity measurements were performed between 75 and 300 K on small disc samples, prepared by pressing and sintering the PbFe\textsubscript{12}O\textsubscript{19} powders for one hour at 925 °C, and after this procedure a small reduction in the coercivity takes place. M(t) was recorded for different steady reverse magnetising fields, around iHc, for 1200 s. Before each measurement the sample was saturated at H\textsubscript{max}.

3. RESULTS AND DISCUSSION

Table 1. Cell parameters and RT magnetic properties of the Pb-M samples studied and literature data (*Ms at H\textsubscript{max} = 16 kOe).

<table>
<thead>
<tr>
<th></th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>(\sigma_\text{B}) (emu/g)</th>
<th>iHc (Oe)</th>
<th>(H_\text{c}(\text{Oe}))</th>
<th>Ms* at 0K (emu/g)</th>
<th>Tc (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>this work</td>
<td>5.877</td>
<td>23.119</td>
<td>54.00</td>
<td>5000</td>
<td>13750</td>
<td>82.00</td>
<td>721</td>
</tr>
<tr>
<td>literature data for ceramics [6]</td>
<td>5.877</td>
<td>23.07</td>
<td>56.00</td>
<td>--------</td>
<td>82.00</td>
<td>725</td>
<td></td>
</tr>
</tbody>
</table>
The powder X-ray diffraction pattern confirmed that the magnetoplumbite structure was the main phase present and no spurious or secondary phases were detected. In Table 1 the lattice parameters and intrinsic magnetic properties are reported and compared with the literature data. As observed the agreement between them is quite good. The high value of coercivity (5 kOe) is an indirect indication of the presence of submicronic particles.

In permanent magnets, the variation of the magnetisation with time due to thermally activated processes can be written as:

\[M(t) = C + S \ln (1 + t), \]

where \(S \) the viscosity coefficient is related to the viscosity parameter, \(S_v \), through the equation

\[S_v = S \left(1 - D x_{ir} \right) \tau (x_T - x_{ir}), \]

\(D \) is the demagnetising factor of the sample; the total differential susceptibility, \(\chi_T \), was obtained by differentiating the demagnetising \(M(H) \) curve; and the reversible susceptibility, \(\chi_{rev} \), was estimated from the slope of the minor hysteresis loop described when the field is decreased from the applied field (i.e. \(\chi_T = \chi_{rev} + \chi_{ir} \)).

Fig. 1 shows the dependence of \(S \) and \(\chi_{ir} \) on the applied field, for different temperatures. The maxima in both, \(S(H) \) and \(\chi_{ir}(H) \), move toward higher fields as the temperature increases. This behaviour is consistent with those observed in sintered hexaferrites by Nishio et al. [7]. Fig. 2 shows that, in all cases, \(S_v \) falls with increasing applied magnetic field. This is more evident in the measurements at 295 K and 225 K and, contradicts the results reported in [7,8], in which \(S_v \) remains constant over a well defined range of applied field. However, this dependence of \(S_v \) on the field has been also observed by us, at room temperature, in submicronic Sr-M hexaferrite powders, prepared by chemical coprecipitation.

In summary, PbFe\(_{12}\)O\(_{19}\) powders with high coercivity (5 kOe) have been successfully obtained using the MOD procedure. The maxima of \(S(H) \) and \(\chi_{ir}(H) \) move towards higher fields as the temperature increases and, a dependence of \(S_v \) on the field was found.

Acknowledgements

One of the authors (S. Díaz) thanks to the ICTP of Trieste for funding his stay at MASPEC/CNR Institute, Parma.

References