The Effects of Hydrogen Reduction on Magnetic Properties of Barium Ferrite Particles
Y. K. Hong, H. S. Jung, N. P. Hur, Samir F. Matar

To cite this version:

HAL Id: jpa-00254769
https://hal.archives-ouvertes.fr/jpa-00254769
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Abstract. A reduction process of the substituted Ba-ferrite has been found to be divided into three steps. At the first and second steps, the magneto-plumbite structure maintains and the coercivity increases. When the reduced-substituted Ba-ferrite particles are reoxidized, the coercivity is reversible in the first step but irreversible in the second step. During the third step, the magneto-plumbite structure was collapsed with formation of α-Fe and BaFeOs_x phases and consequently the coercivity distribution was broad and the coercivity irreversible. The coercivity and saturation magnetization decreases and increases up to 130 emu/g respectively. In this study, it is found that the substituted cations prevent the magneto-plumbite structure from collapse during the reduction process and furthermore migrate from the magnetic sites of $4f_w+2a$, $2b$, and $12k$ to $4f_{1'}$ and $12k'$. An increase in the coercivity before the collapse of magneto-plumbite structure is attributed to the migration of substituted cations in hexagonal Ba-ferrite structure.

1. INTRODUCTION

It has been known that the Ba-ferrite is one of the best candidate materials for high density magnetic recording. The Ba-ferrite particles have smaller magnetic moment than currently used needle-shaped particles. To overcome disadvantages of low magnetic moment, methods such as an improvement of Ba-ferrite's magnetic moment [1], double layer structure of tape with underlayer of Co-γ-Fe$_2$O$_3$ or metal particle [2], and an improvement of magnetic head's sensitivity [3] have been proposed. In order to increase magnetic moment of Ba-ferrite particles, cation substitution method [4], epitaxial growing of spinel ferrite on Ba-ferrite surface [5], and creation of α-Fe phase by reduction [6] have been studied. During the reduction process, magnetic moment increases with an amount of α-Fe phase created, and coercivity increases with reduction temperature unlike the behaviors of pure Ba-ferrite particles. Therefore, the reduction behaviors of both substituted and pure Ba-ferrite particles have been studied to understand the reason why an increase in coercivity with the reduction temperature occurs.

2. RESULTS AND DISCUSSION

The Ba-ferrite particles were prepared by glass-recrystallization process, which is described in details elsewhere. [7] The coercivity of pure Ba-ferrite particles decreases monotonically with reduction temperature, while that of substituted Ba-ferrite particles shows a peaking effect of coercivity as shown in Figure 1. The specific saturation magnetization decreases slightly for both substituted and pure Ba-ferrite particles up to 350 °C and does rapidly for the pure Ba-ferrite particles at 450 °C because of phase transformation from magneto-plumbite structure to amorphous phase. But the substituted Ba-ferrite retains magneto-plumbite structure with small amount of α-Fe phase up to 450 °C. The α-Fe phase is a dominant phase at 520 °C for both
pure and substituted Ba-ferrite particles with insignificant amount of BaFeO$_3$\textsubscript{X} phase. An appearance of α-Fe phase at 520 °C enhances the specific saturation magnetization and decreases the coercivity. After complete reduction the specific saturation magnetization reaches 130 emu/g at 520 °C. A coercivity distribution becomes broad from 350 °C before formation of α-Fe.

Figure 2 shows TG and DTG curves for study of reduction behaviors of the substituted Ba-ferrite particles. The reduction process is found to be divided into three steps. Weight loss up to 700 °C is 24.1 %, which indicates 88 % of the particle is reduced judging from 27.3 % oxygen content of pure Ba-ferrite. During the first step at 30 °C to 280 °C, the weight loss is small, 1.2 %, while the weight loss increased to 7.8 % in the second step at 280 °C to 410 °C. The coercivity is reversible by the re-oxidation for the first step, while during the second step the switching field distribution becomes broad with irreversible coercivity. This is because Ba-ferrite was reduced above thickness of oxygen deficient layer which oxygen transfers reversely, the surface layer became oxidized but when it was re-oxidized the inner layer didn't. In the third step the weight loss is 15.1 %, which is attributed to reduction of Ba-ferrite to α-Fe and a small amount of BaFeO$_3$\textsubscript{X}. An exposure of this reduced Ba-ferrite particles to the air is immediately reoxidized.

Mössbauer spectra of substituted Ba-ferrite particles reduced at the various temperature were taken for a study on an increase in coercivity. The substituted Ba-ferrite particles retain a single phase up to 350 °C, at which reduction temperature the coercivity increases sharply. The substituted cations migrated from the sites of 4f\textsubscript{5+2}, 2b, and 12k to 4f\textsubscript{n} and 12k' during the reduction process. It is speculated that oxygen deficiency of Ba-ferrite, occurred during reduction, enhances the substituted cations to migrate to thermodynamically stable sites. Therefore the increased coercivity of single phase Ba-ferrite particles reduced up to 350 °C is not enhanced by a strain induced anisotropy, which occurred due to nucleation of α-Fe phase in Ba-ferrite structure [6], but by nucleation of highly anisotropic phase in the structure due to the migration of substituted cations.

References