Magnetic Viscosity of Sr-Na-Zn W-Type Hexagonal Ferrite Magnets

H. Nishio, H. Yamamoto

To cite this version:

HAL Id: jpa-00254766
https://hal.archives-ouvertes.fr/jpa-00254766
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Magnetic Viscosity of Sr-Na-Zn W-Type Hexagonal Ferrite Magnets

H. Nishio and H. Yamamoto*

Materials Research Center, TDK Corporation, 570-2 Aza-Matsugashita, Minami-Hatori, Narita 286, Japan

* School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214, Japan

Abstract. The temperature dependence of the magnetic viscosity coefficient (Sv), the activation volume (v), and the anisotropy field (H_A) were examined for Sr-Na-Zn W-type hexagonal ferrite magnet from 77 to 623 K. Samples with different coercive forces (H_cJ) were prepared, and the dependence of Sv and v on H_cJ was studied at 300 K. The results show that the temperature dependence of Sv is the same as that of H_cJ. The value of v is inversely proportional to H_A. The logarithm of Sv is proportional to log H_cJ and H_cJ is proportional to v^-1, as in the case of SmFe_11N_8 and SrM particles used in magnets and BaM fine particles used for high density recording media. They are considered to have a similar coercive force mechanism.

1. INTRODUCTION

In recent years, there has been a growing interest in W-type hexagonal ferrite which has a saturation magnetization (J_s) about 10% greater than that of M-type hexagonal ferrite. Many reports on the magnetism of W-type Hexagonal ferrites have been published [1,2], though studies on their magnetic viscosity are particularly few. The magnetic viscosity in permanent magnets belongs to the Jordan-type aftereffect phenomenon and is caused by thermal fluctuations [3,4]. It is known to depend on the magnetic viscosity coefficient (Sv), the irreversible susceptibility (Xirr) and the logarithmic time (ln t) [3-5]. When the change in magnetization from time t_1 to t_2 (∆J) is considered, Sv can be expressed using the following equation [3-5]:

\[Sv = \Delta J / Xirr (ln t_2 - ln t_1) = k T / (\partial E/\partial H) = k T / v J_s \] \hspace{1cm} (1)

where k is the Boltzmann constant, E is the activation energy, v is the activation volume and H is the magnetic field. This paper reports on studies of the temperature dependence of Sv and the anisotropy field (H_A) for a Sr-Na-Zn W-type hexagonal ferrite in the temperature range from 77 to 623 K. Also, the relationships between the coercive force (H_cJ) and both Sv and v were investigated at 300 K.

2. EXPERIMENTAL

Sr-Zn W-type hexagonal ferrite was investigated with 1.33 wt% Na_2O and 0.67 wt% SrO, which were added after semisintering treatment. Table 1 shows sintering conditions, grain size (D) and the magnetic properties of Sr-Na-Zn W-type hexagonal ferrite magnets. These samples were spherical with diameters of 4 mm. After the application of 1.6 MA/m, the samples were subjected to a constant external field (Hex) for 1000 s and ∆J was measured using a vibrating sample magnetometer (VSM). The apparent reversible susceptibility (Xrev) and the total differential susceptibility (X'tot), obtained by differentiating the demagnetizing curve with respect to Hex, were also measured using a VSM. Xirr can be expressed as X'tot - X'rev, where the prime indicates the values before correcting for the demagnetizing field. Corrections were made for the demagnetizing field using a demagnetizing factor of N=1/3. The uniaxial anisotropy constant (K_u) is obtained from unsaturated torque curves. For the torque magnetometer used, fields were available in the range of 0.8 to 2 MA/m. The coefficient of the sin^2 θ term was extrapolated to infinite H by plotting against 1/H. The uniaxial anisotropy constants and the anisotropy fields are related by H_cJ=2K_u/J_s.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sintering conditions</th>
<th>D (μm)</th>
<th>J_s (T)</th>
<th>B_r (T)</th>
<th>H_cJ (kA/m)</th>
<th>(BH)_{max} (kJ/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>125°C x 0.5 h</td>
<td>0.5 - 1.5</td>
<td>0.407</td>
<td>0.335</td>
<td>138</td>
<td>19.3</td>
</tr>
<tr>
<td>B</td>
<td>1275°C x 1.0 h</td>
<td>1.1 - 2.0</td>
<td>0.407</td>
<td>0.349</td>
<td>82</td>
<td>15.3</td>
</tr>
<tr>
<td>C</td>
<td>1300°C x 0.5 h</td>
<td>1.8 - 4.0</td>
<td>0.456</td>
<td>0.355</td>
<td>36</td>
<td>5.4</td>
</tr>
<tr>
<td>D</td>
<td>1300°C x 1.0 h</td>
<td>3 - 40</td>
<td>0.456</td>
<td>0.414</td>
<td>18</td>
<td>2.4</td>
</tr>
<tr>
<td>E</td>
<td>1300°C x 2.0 h</td>
<td>3 - 60</td>
<td>0.456</td>
<td>0.417</td>
<td>14</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table 1. Sintering conditions, grain size D and the magnetic properties of Sr-Na-Zn W-type hexagonal ferrites

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:19971125
3. RESULTS AND DISCUSSION

Similar curvatures of the magnetic field dependencies of $\Delta J/ln(t_1 - ln t_2)$ and X_{irr} were observed for Sample A and these had maximum values around the H_{cj} point for each temperature. Figure 1 shows the magnetic field dependence of S_v for Sample A obtained from Eq.(1), using the values of $\Delta J/ln(t_1 - ln t_2)$ and X_{irr}. The range in which S_v stays constant with H_{ex} is very wide at each temperature. For Sample A, J_s and K_a both decreased as temperature increased. The temperature dependence of S_v and H_{cj} is shown in Figure 2 for Sample A. The temperature dependence of S_v is the same as that of H_{cj}, S_v and H_{cj} increase with the increase in the temperature between 77 K and 500 K, as in the case of SrM and BaM magnets[6]. The values of S_v and H_{cj} are maximized near 520 K and decrease suddenly after that. The temperature dependence of the anisotropy field (H_{A}) obtained using the values of K_a is shown in Figure 3 along with the activation volume (v) calculated from S_v. The value of v is inversely proportional to H_{A} in the temperature range from 77 K to 623 K. Figure 4 shows the dependence of S_v and v on H_{cj} at 300 K for Sr-Na-Zn W-type hexagonal ferrite samples A, B, C, D and E. The logarithm of S_v is proportional to the logarithm of H_{cj} and is proportional to v^{-1}, as in the case of Sm$_2$Fe$_{17}$N$_x$ and SrM particles used in permanent magnets and BaM fine particles used for high density magnetic recording media[7-9]. It is believed that they have a similar coercive force mechanism.

Figure 1. External field dependence of the magnetic viscosity coefficient S_v for Sample A at various temperature.

Figure 2. Temperature dependence of coercive force H_{cj} and the magnetic viscosity coefficient S_v for Sample A in the temperature range between 77 and 623 K.

Figure 3. Temperature dependence of the anisotropy field H_{A} and the activation volume v for Sample A in the temperature range between 77 and 623 K.

Figure 4. Plots of the magnetic viscosity coefficient S_v and the activation volume v against coercive force H_{cj} for Sr-Na-Zn W-type hexagonal ferrites.

References