Investigation of Magnetic Anisotropy of the Nd2CuO4 Single Crystals
A. Bazhan

To cite this version:

HAL Id: jpa-00254747
https://hal.archives-ouvertes.fr/jpa-00254747
Submitted on 1 Jan 1997

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Investigation of Magnetic Anisotropy of the \(\text{Nd}_2\text{CuO}_4 \) Single Crystals

A.N. Bazhan

P. L. Kapitza Institute for Physical Problems, ul. Kosygina 2, Moscow 117334, Russia

Abstract. Investigations of the arising and disappearing of the 90° anisotropy of the magnetic properties of \(\text{Nd}_2\text{CuO}_4 \), when magnetic field, with orientations in the (001) plane, is increased at \(T \sim 4.2\text{K} \) are described. Experiments are made with v.s.magnetometer, which can measure three components of the magnetic moments.

1. INTRODUCTION

Investigations of the magnetic properties of \(\text{Nd}_2\text{CuO}_4 \) single crystals of \(\text{I}_\text{4}/\text{mmm} \) structure are in the current interest as this material with two kind of magnetic ions is used for HTS. In this material Cu magnetic ions are antiferromagnetically ordered from \(T_N = 255\text{K} \), Nd magnetic moments are in paramagnetic state above \(1.5-2\text{K} \) with strong polarization of Nd along Cu magnetic moments at \(T \sim 4.2\text{K} \), [1,2]. Dependencies of the components of the sample magnetic moments, along magnetic field and perpendicular to it, from magnetic field and it's orientations in the (001) plane of \(\text{Nd}_2\text{CuO}_4 \) at \(T \sim 4.2\text{K} \) are investigated in this work.

2. EXPERIMENTAL EQUIPMENT

Dependencies of the three perpendicular components of the sample magnetic moments from the magnetic field - \(M_{x,y,z}(H) \) and from the magnetic field orientations with respect to crystallographic axis of the samples - \(M_{x,y,z}(H_0,\phi) \) with accuracy of the separate investigations of \(M \) components \(\sim 10^{-2} - 3\times10^{-3} \) and sensitivity \(\sim 10^{-3} \) can be investigated with the v.s.magnetometer, [3]. In the Fig.1 the arrangement of the M1, M2, M3 measuring an control M4 coils with respect to the X, Y, Z coordinates of the v.s.magnetometer and it's scheme are presented. Samples vibrate along vertical OZ direction, perpendicular to the orientation of the applied magnetic field - OX direction. Axis of the measuring coils are oriented along OZ direction. Using of the control M4 coils allows a deviation of the measuring and control signals. Divided signals from the M1, M2, M3, measuring coils, which are determined by the values of the components of the sample magnetic moments on the OX, OY, OZ directions are amplified and sent to the "Y" coordinate of the R.C. "Vectra". Signals, which are determined by the values of the applied magnetic fields, or angles of the sample rotation around OZ direction are sent to the "X" coordinate of P.C. Ranges of the magnetic fields \(0 - 85\text{kOe} \) and temperatures 1.5 - 300K are used in the device, [3]. The calibration of the magnetometer and control of the separate measuring of the components of the sample magnetic moments are made with antiferromagnetic \(\text{MnF}_2 \) single crystals, [3], at liquid helium temperatures.

Fig.1. Arrangement of the M1, M2, M3 measuring, M4 control coils and the scheme of the v.s.magnetometer.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:19971108
3. RESULTS AND DISCUSSIONS

The arising and disappearing of the 90° anisotropic $M_{x,y}(H)$ and $M_{x,y}(H_0,\phi)$ dependencies from magnetic field and its orientations in the (001) plane of the Nd$_2$CuO$_4$, when the magnetic field, with orientations in this plane, is increased, are observed at liquid helium temperatures. The ratio of the observed magnetic moments $\chi(H)/\chi(H_0) \sim 10^{-2}$. At $T=4.2K$ and magnetic field orientation along [100] axis magnetic susceptibility of the sample $\chi = (1.83 \pm 0.06) \times 10^{-1}$CGS/mole. The $M_{x,y}(H_0,\phi)$ dependencies of Nd$_2$CuO$_4$ single crystal at different values and orientations of the magnetic fields in the (001) plane of the sample at $T=1.8K$ are presented in Fig.2a,b,c. Orientations of the [100] and [110] axes, when applied magnetic field is oriented along these axes, are presented in Fig.2 also. Values of the observed $M_{x,y}(H_0,\phi)$ components of the magnetic moments and their dependence from the temperature are determined by Nd magnetic moments, as the ratio of the magnetic susceptibilities of the ordered Cu and paramagnetic Nd magnetic moments at $T=4.2K$, $\chi(Cu)/\chi(Nd) \sim 10^{-3}$. The arising of the anisotropy of the H_0 and $M_{x,y}(H_0,\phi)$ dependencies and appearing of the $M_{y}(H_0,\phi)$ dependencies are observed from the magnetic fields $H_0 \sim 8.4kOe$. On the $M_{y}(H_0,\phi)$ dependencies, when the applied magnetic field is increased, from $H \sim 20kOe$ (at $T=1.8K$) there is observed the arising of the quick change of the $M_{y}(H_0,\phi)$ at the magnetic field orientations along [100] and [010] axis. At the magnetic fields higher then $H_0 \sim 60kOe$, and at the saturation of the Nd magnetic moments along applied magnetic field, dependencies of $M_{x,y}(H)$ and $M_{x,y}(H_0,\phi)$ and values of $M_{x}(H)$ and $M_{y}(H_0,\phi)$ dependencies decrease, Fig.2 a,b,c.

![Fig.2a,b,c. Mx,y(H0,\phi), dependencies of Nd$_2$CuO$_4$ from H orientations in (001) plane. Mx(H0,\phi) at at H0=5.4, 33.8kOe. curves 1, 2, T=1.8K, H0=62kOe. curve 3, T =1.9K. My(H0,\phi) at H0=5.4, 26.4, 84.4kOe. curves 4, 5, 6. T = 1.8K. Dependencies of the Mx,y(H) and Mx,y(H0,\phi) magnetic moments from values of the magnetic field and its orientations in the (001) plane of the sample can be explained by polarization of Nd along Cu magnetic moments with assumption about non collinear structure of magnetic ordering of Cu magnetic moments, when Cu magnetic moments are oriented along [100] and [010] axis, [2]. Appearance of anisotropic $M_{x,y}(H_0,\phi)$ dependencies at temperatures $T > 4.2K$ are explained by existence of two magnetic phase transitions, connected with rotations of Nd(Cu) magnetic moments to perpendicular to \vec{H} directions, when applied magnetic field is oriented along [110] axis and [100] axis, $H_{cl}(T)$ and $H_{c2}(T)$, and by saturation of Nd magnetic moments along \vec{H} in high magnetic field. At $T=1.8K$, magnetic fields $H_{cl} \sim 8.4kOe$. and $H_{c2} \sim 46kOe$. The Nd and Cu magnetic systems can be investigated separately with the $M_{x,y}(H)$, $M_{x,y}(H_0,\phi)$ experiments in the magnetic fields $H \geq 120kOe$. at the saturation of the Nd magnetic moments along applied magnetic fields.

4. CONCLUSIONS

Arising and disappearing of the anisotropy of the magnetic properties of the Nd$_2$CuO$_4$ single crystals in (001) plane of the sample, which are connected with rotation of the Nd(Cu) magnetic moments to the perpendicular to the applied magnetic field direction at the increasing of the applied magnetic field at liquid helium temperatures are investigated with v.s.magnetometer, which can measure three perpendicular components of the sample magnetic moments.

References