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Current Status of Soft Ferrite in Japan

T. Ohiai

Materials Research Center, TDK Corporation, 570-2, Aza-matugasita, Minamihatori, Narita-shi,
Chiba 286, Japan

Abstract. This paper focuses on recent developments in the field of materials technology of soft ferrites in Japan. With
the rapid development of the electronics market, the ferrite industry has grown to a considerable size. Magnetic
characteristics of ferrites are quite sensitive to the chemical composition, the production process and to microstructure.
Controlling these factors is an important key to achieving high performance ferrites. MnZn ferrites are classified according
to their characteristics. High initial permeability materials are used for wide band and pulse transformers, and low power
loss materials are used for power application. High initial permeability, over 20000 at 10kHz, was achieved by Bi,O,
addition using high purity raw materials. Low loss MnZn femrite, with Pcv=199kW/m® at 100kHz, has recently been
developed by SnO, addition under some optimized process conditions. NiCuZn ferrite is employéd for multilayer-ferrite
chip-components(MLFC). Low oxygen partial pressure during sintering is an important factor in controlling the
nanostructure of grain boundaries. MnMgZn ferrite has been produced in large quantity for deflection yoke application
because of its high cost performance. Investigation of composition, additives and sintering conditions has made it
possible to obtain lower loss than that in NiCuZn ferrite measured at higher temperatures.

1. INTRODUCTION

Since the discovery of an efficient mixedferrite by Dr. Yogoro Kato and Dr. Takesi Takei about 60 years ago [1] , much basic
and applied research and development has been carried out in Europe as well as in Japan. In the 1940’s and 1950’s, femites were
systematized in the academic field, and today ferrite theory is well organized In 1935, Japan pioneered the mass-production of
ferrites. From the 1950’s, as radio and television sets spread, ferrites establisheda significant positioninindustry, andnow ferrites
are one of the most essential materials in the electronics industry.

Soft ferrites are widely used in electronic devicesas magnetic coresfor high frequency applications. The advantages of ferrites
for these applications are higher electronic resistivity as opposed to metals, high machinability, ease of die pressing, chemical
stability and lower cost. Figure.1 shows the average monthly sales of soft magnetic ferrite cores in Japanin the last seven years,
which were taken from the Electronic Materials Manufacture’s Association of Japan. The sales for the yearof 1991 declined slightly
on account of the business recession over the world. However, after that, the ferrite business has been improved stably. Sales of
soft ferrites, shown in Fig.1, have beenclassified by fields of applicationin Fig.2. In spite of a recent stability in the overall market,
the sales in deflection yoke and power applications have grown gradually. The formerhas been supported by sales of CRTs(Cathode
Ray Tube) for personal computer and television sets for home use, while the latter is due to switching power supply.

Various performance characteristics of ferrites are necessary for varied applications. However, basically high permeability, high
saturation magnetization, high Curie temperature, andlow loss areexpected. It is impossible for one type of ferrite to possess all
of theseat once, and the type of ferrite should be chosen depending on what performance characteristicis important. In the following
sections, the review of recent developments in the field of materials technology of soft ferrites is described.
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Fig.1 Average monthly sales of soft ferrite in Japan. Fig.2 Sales of soft ferrite classified by fields of application.
2. High initial permeability MnZn ferrite
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The temperature dependence of initial permeability of Bi,O,
added specimens are shown in Fig.3. High pemmeability MnZn
ferrites, with p;=23000 and tan 8/ g2;=10X 10 at 10kHz, have
been developed by optimization of compositions and sintering
process conditions. Grain growth is thought to result from Bi,O,
addition to MnZn ferrite [6] . However, the experimental results
aresubstantially different [7] . Thus, the high permeability should
be explained by an effect other than Bji,0; addition. The
compositional distributions near grain boundaries are shown in
Fig.4. The Bismuth content dependence onthe & valueis shown
in Fig.5, representing oxygen content in the sintered body.
Smaller & value deviations were obtained for Bi,O; added
specimens rather than those of specimens without Bi,O,. It is
assumed that Bi promotes diffusion mobility of O, through grain
boundaries. High initial permeability is therefore thought to be
due to the homogeneous oxygen content distribution in the
sintered body, facilitated by high diffusion mobility.

3. Low power-loss MnZn ferrite

Low power-loss MnZn ferriteis widely used for powerapplication
such as the switchedmode power converter. Power loss is
theoretically divided into hysteresis, eddy current, and residual
losses [8]. These threefunctions are distinguished from each other
according to the difference in their frequency dependencies. Eddy
current loss is proportional to the reciprocal of electrical
resistivity. High electrical resistivity is one of the mostimportant
characteristics for the power ferrite. This characteristic has been
improved mainly by adequate additives [9] . Itis well known that
the addition of CaO and SiO, in MnZnferriteis effectivein raising
the electrical resistivity through the formation of an insulating
layer along the grain boundaries. In order to achieve lower loss
characteristics, high resistivity in the main phase has been required.
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Fig.4 Distribution near grain boundaries of Bi,O,
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Fig.6 Temperature dependence of dc resistivity
as a function of SnQ,.

SnO, is well known to be solublein spinel [10]
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Fig.7 Temperature dependence of power loss of MnZn ferrite.

and to compensate for Fe*. Figure.6 shows the temperature dependence of de

resistivity as a function of SnO, content. Addition of SnO, to MnZn ferrite was effectivein controlling the electron transfer between
Fe* and Fe*, and consequently increased the resistivity. As a result, low loss MnZn ferrite, Pcv=199kW/m? (100kHz, 200mT,
807C), has been recently developed by SnO, addition under some selected process conditions, as is shown in Fig.7 [11] .

4. NiCuZn ferrite

NiCuZn femite is employed for multilayer-ferrite chip-
components (MLFC), because of its high performance athigh
frequencies. The sintering temperature of NiCuZn fermite for
MLEC should be below 900T to avoid melting the internal
Ag winding. Nakano, et. al. [12,13] reported that Ag
introduced a compressive residual stress by diffusing into the
ferrite, which was observed as interference fringes at grain
boundaries by TEM. Recently, in order to achieve high
frequency and high performance MLFC, other additives have
beenstudied [14] . Figure.8illustrates the effectof impurities
on the Q-factor of a chip inductor. Addition of CoO was
effective in improving the Q-factor to a maximum amountof
2000-3000 ppm, while otherimpurities degraded it. Sintering
conditions are also an important factor. High purity of raw
materials for NiCuZn ferrite are essential to MLFC. The effect
of oxygen partial pressure duringsintering on dc resistivityis
shown in Fig.9. Low oxygen partial pressure, such as 5%
oxygen, led tohigh dcresistivity and highQ-factor because of
the decreasing residual stress (manifested as a reduction in
interference fringes).

Production of multilayerferrite chip-components has
grown remarkably in past years. To enhance the performance of
MLFC, itis of prime importance to control the small amount
of ingredients and the firing conditions, as well as to control
the stress caused by internal Ag winding. New progress in
MLFC can be expected using such material technology.
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Fig.8 Effect of impurities on the Q-factor of chip inductor.
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Fig.10 Temperature dependence of power loss of MnMgZn ferrite.
6. CONCLUDING REMARKS

There is no doubt that the fernites market will grow steadily as magnetic materials for high frequency devices. No alternative
materials are projected for the future. In addition, higher electronic and magnetic properties for ferrites have been demanded,
corresponding to the electronic industry pursuing smaller and higher performance electronic devices. For high performance ferrites,
control of microstructures as well as grain boundaries is necessary. Among the many ferrite production process factors, purity of
raw materials, additives and sintering process should be well optimized. As the latest processfor ferrites production, the co-spray
roasting method has been industriatized. High purity ferrites are obtained from relativelylow costraw materials with high impurity
content through this excellent process. And more advanced technology for structural analysis, definitive composition analysis and
performance evaluation at high frequency are essential for the next generation of ferrites.

After the passing of sixty years of ferrite history, itis generally believed that the growth stage had finished and that the maturity
stage has started. However, new applications of ferrites, such as toners and ferrite carrier for photocopy machines and the application
of biotechnology, have beendeveloping. I believe thatmuch high performanceand high dependability of ferrites will be achieved
through new materials process and microstructure control technology based on our exciting technology and theory.
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