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Abstract. Using low-stress pseudoshear deformation, we measured the ambient-temperaturecreep-recovery behav- 
ior of polycrystalline indium. The &+J diagram shows three regions with increasing stress: stress exponents of 1.05, 
7.4, and 2.0. The diagram resembles remarkably the dislocation-velocity-shear-stressdiagrams reported for various 
materials by many authors, who interpreted the diagrams by dislocation dynamics. Applying an extended Burgers 
model (two Kelvin-Voigt elements) gave for the three regions the following relaxation times z2 and .c3 (in seconds): 
(1) 11, 123; (2) 10, 132; (3) 12, 154. Thus, z, is nearly stress independent, and .c2 increases with increasing stress. 
Laplaceantransformation of our ~ ( t )  measurements to get the retardation-time distribution function g(In z) indicates 
in all three regions a strong peak near .c2 = 3 s and a weaker, broader peak near 23 = 150 s. These agree surprisingly 
well with the Burgers dashpot-spring-model results. We analyzed the recovery part of the strain ~ ( t )  to obtain 
e-lcf) curves. 

1. INTRODUCTION 

Creep is not only an important technological problem but also a basic solid-state physics problem where 
deformation often occurs by dislocation mechanisms. Measurements of creep strain ~ ( t )  can be converted 
to ~ ' ( f ) ,  internal friction dependence on frequency. 

The present study focuses on a soft metal: indium, which at ambient temperature exists at about 
70% of its melting point, thus in the high-temperature region. Indium shows a body-centered-tetragonal 
crystal structure. In the alternative face-centered-tetragonal basis, the unit-cell dimensions are 4.947 and 
4 . 5 9 8 ~ .  Thus, with an aspect ratio of 1.08, indium is not far from face-centered cubic. Indium's physical 
properties, such as elastic stiffness and thermal expansivity, are moderately anisotropic. 

2. MATERIAL 

From a commercial source, we obtained 3-kg ingots with 99.99% purity, the principal impurities being 
Cu, Fe, Mn. We obtained specimens by casting the indium into aluminum molds in a nitrogen atmosphere 
(99.95%, dry). The optical microstructure showed equiaxed grains with a wide grain-size distribution: 
0.1-1 mm. By Archimedes's method, at 295 K, we found a mass density of 7.283 g/cm3, nearly exactly 
the x-ray-diffraction handbook value of 7.285. Using a pulse-echo measurement method, we found the 
following elastic constants: bulk modulus 42.2 GPa, Young modulus 12.6 GPa, shear modulus 4.35 GPa, 
Poisson ratio 0.450. 

3. MEASUREMENTS 

To measure the creeprecovery curves at various stresses, we used a method described by Kobayashi 
and coworkers [I]. We applied a pseudoshear force to a 1-cm-cube specimen by using calibrated masses 
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to a maximum of a few kilograms. We detected displacement within 10 nm by using a commercial dual- 
frequency Michelson laser interferometer and two cube-corner reflectors. 

4. DISCUSSION 

In our creep-recovery measurements, the most conspicuous feature is the enormous viscoplastic com- 
ponent. The total strain ~ ( t )  contains three parts: elastic, anelastic, viscoplastic. That is, 

E = E , + E , + E , .  

We modeled the ~ ( t )  curve with a mechanical dashpot-and-spring model [2]: 

Here, t denotes time after loading, GO applied constant shear stress, Mi spring stiffnesses, q viscosity, ri 
retardation times related to the spring stiffnesses and to the in-parallel dashpot viscosities by qi  = Miria 
We added the second anelastic Kelvin-Voigt unit to the Burgers model to achieve better measurement- 
modeling agreement. We determined &(t=co) analytically by differentiating Eq. (2) and using the coeffi- 
cients determined by fitting Eq. (2) to the ~ ( t )  measurements. 

The E- measurements show several interesting features: At low stresses, E - on with n = 1.05 
+ 0.08, corresponding closely to Newtonian viscosity. At higher stresses, i: - o" with n = 7.4 + 0.04. We 
guessed, but did not verify, that the Newtonian region corresponds to Harper-Dorn creep [3]. The power- 
law region served as a focus of a few previous studies, both experimental and theoretical [4,5]. For this 
region, Weertman's model [6] predicts n = 4.5. His model presumes annihilation by dislocation climb of 
opposite-sign edge dislocations on parallel slip planes. Clearly, for our indium results, we require a model 
predicting n = 7. At still higher stresses, the slope decreases to about n = 2.0. (In Fig. 2, these three 
regions are labeled 1, 2, 3 in order of increasing stress.) 

Some authors [7] attribute the lower slope change to the Peierls stress. We prefer to invoke the 
following relationship for steady-state creep (plastic-strain rate): 

E = N(t)bv . (3) 

Here, N denotes mobile-dislocation density, b Burgers-vector magnitude, v dislocation velocity. Thus, an 
E%s diagram should resemble a v-o diagram. Comparisons confirm this [8-101. Various dislocation mech- 
anisms associated with the S-shape v-o curves are described elsewhere [8-101. 

We can obtain the retardation-relaxation times r from either a two-Burgers-units model, Eq. (2), 
or another, model-independent approach: spectral analysis. Sgobba and coworkers [l 11 described how the 
relaxation-time spectral function can be approximated: 

Figure 1 shows the calculation results: a strong, sharp peak near 3 s and a weaker, broad peak 
near 150 s. These results agree surprisingly well with the two-Burgers-units dashpot-spring-model results. 
As described by Nowick and Berry [12], agreement between approximate expressions and "exact" results 
for the standard anelastic solid is often reasonably good. 

From spectral analysis, Nowick and Berry [I31 gave an approximate relationship: 

Figure 2 shows the results obtained from Eq. (5) for the recovery part of ~ ( t ) .  

n: d ln J l ( @ )  7C d In J(t) d In ~ ( t )  
Q-' = -- / - 1  = -  

2 d l n o  , ,  2 d i n t  , 2 d l n t  t=lla 



Frequency (Hz) 

Figure 1: Spectrum of retardation times 
showing two distinct peaks. 

Figure 2: Internal-friction-frequency curves 
obtained from Eq. (5). 

5. CONCLUSIONS 

1. The viscoplastic strain dominates the strain response. 
2. Good agreement with a dashpot-spring model requires using two, not one, Burgers units. 
3. Retardation times from spectral analysis agree reasonably well with those from a dashpot-spring model. 
4. The &-o diagram shows three regions, as found in velocity-stress diagrams. 
5. Analyzing the ~ ( t  ) diagram gives well-defined @'(f) peaks near 0.01 Hz. 

A full version of this study will appear elsewhere [14]. 
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