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Abstract The  disordered systems are of fractal structures. Alexander and Orbach shoived that the 
vibrational density of states for fractal nets follows the universal law:~(w)-d-:,.\\.here a is the spec- 
tral (fracton) dimensionalitv;a=4/3 for any Euclidean dimension d. The  excitations belonging to  this 
class mere named "fractons". We have employed a novel numerical method developed by Williams et  al .  
and performed computer simulation. We have pointed out that the connection between the vibration 
spectrum and the ultrasonic attenuation in sintered metal powders. 

1. Introduction 
T h e  disordered systems ?e. g. .amorphous structures ,sintered metal powders and so  forth .are 

important research directions in condensed matter physics. Because the objects of s tudy are not 
strict periodic structure, the difficulty of theoretical treatment is larger. T h e  concept of fractal 
s t ructure,  developed by ~ a n d e l b r o t ~ : ' ,  has proven t o  be of great  utility because many structures 
that appear purely random can be described within a geometric mathematical framework. T h e  de- 
velopment of fractal geometry leads to  remarkable advances in the description of many phenomena. 

2. Fracton 

In the present paper , a  number of experimental results concerning the acoustical vibrations of 
self - similar fractal solids are reviewed. We consider fractal solids which are selfsimilar over a 
range of lengths 1 ,  comprised between their partical (o r  molecu1ar)size a and their correlation 
length E , a < l < i .  Beyond i. the solids are  homogeneous. T h e  long wave acoustical vibrations.of 
wavelength h > i ,  are the5 acoustical phonons of angular frequency w, wave vector k = 2 a / h .  and 
density of s ta tes  Nph(w)=wd-'.where d is the  Euclidean dimension of the embedding space. A s  w is 
continuously increased ,one reaches a crossover frequency o,,l, where K i =  1. Near and beyond this 
point .all length seales relevant to  vibrations are  expected to  collapse to  a single one , K l ~ , , ~ K l , , , , ~  
kl=l .  These excitations have been called fractonsC21.and their density of states was  assumed to 
scale with w a s  Nrr (w) awa-l. Here a is the  so-called spectral dimension. different from D. the 
Hausdorff dimension of the fractal, a<D, where is the spectral (fracton) dimensionality, a= 4/ 
3for any Euclidean dimension d. C'IFractons a re  strongly localized eigenmodes. 

T h e  understanding of the nature of localized fractons is .however ,unsatisfactory both theoret- 
ically and experimentlly. Computer simulations were seen t o  be one of the most convincing experi- 
ments revealing the nature of localized fractons. 

We have performed computer experiments a t  the percolation threshold PC. Our  samples treated 
have the  site - number with N = 1600, for which a numerical method developed by Williams and 
MarisC3] was employed. 

Let us  consider a set of N atoms which are  coupled together by linear springs. F o r  simplicity. 
we consider the  particles to  move only in a single direction (e. g. the  z direction) ,bu t  our method 
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can easily be extended t o  cover general motions. T h e  equation of motion of everyone atom is 
M l G l ( t ) = - 2 @ l l ~ ~ l ~ ( t )  (1 )  

1' 

M: and u l ( t )  are the mass and displacement of 1 th  atom and QIl. describes the strength of the 
spring coupling atoms 1 and 1 ' .  T h e  displacement can be decomposed into a set of normal modes ac- 
cording to 

e l  (1) 
u l ( t > = C Q ~ ( t ) -  (2)  

2 / M ,  
where Qi is the amplitude of the normal mode A and el()\) is the displacement pattern. We star t  

with each atom a t  rest and with zero displacement. We then apply a force on each atom given by 
Flcos ( a t )  (3)  

where Fl is independent of  time. T h e  total energy of the system is 
1 F,e,(A) sin2{Cwi-a>/2Jt) E = Z 2 [ ~  - 

A 1  & l2 ( ~ ~ - 0 ) ~  

Now let us choose 

where Fo is a constant and Ql is a random quantity. If we average over all possible values of Q i .  
we find that the average value of the total energy E becomes 

Fa sin2{[(wi-a)/ZJt) 
<E> = -2 ("A-a)? 4 
Thus ,under certain conditions we  can find the  density of vibrational states g ( R )  from 

8<E> g(R>=- irtFaN (7 )  

The problem thus reduces to  the soiution of equations of motion of the system in he presence 
of a periodic force. These equations can be written a s  

U ~ ( ~ ) = M ~ ' ( - ~ @ ~ I ~ U ~ ~  ( t ) +  F1cos(S?,t)) (8 )  
1 

l i , ( t )=u,( t )  (9) 
The  standard approach t o  the time development is t o  replace t by n r  where r is a small time 

step.and n is an integer. T h e n  a time development algorithm yields 
~~(n+l>=u,(n)+M;~[~%~~~u~~ ( n > + F l c o s ( a n r ) ] r  (10) 

u , ( n + l ) = u l ( n ) + u , ( n ) r  (11) 

Thus we can apply this algorithm t o  the system of N atoms driven by the  force (3).  This  sys- 
tem can be thought of as  N oscilletors ,and so  the algorithm effectively time develops each of these 
oscillators with an apparent frequency given by (12). 

4. Results and Discussions 

We have applied our numerical method to study localizition in a simple two-dimensional mod- 
el. The  atoms form a simple cubic lattice in the x-y plane,and a re  allowed to move only in the  Z 
direction. These atoms interact only with nearest neighbors via springs of s t rength k. If we label 
the atoms by coordinates l,.l, . the equation of motion becomes 

GI  ." =M~'Z[~(UI~~+,.I~~~U~~~~~~~, ," +U1~,11~~LUl~,l~pl-4Ul,l~)CF~,~y~~~~~t~] (13) 

We have calculated g ( w )  for lattices of 1600 atoms in a 4 0 X  40 array. T h e  spring constant k 
was 1 .and the masses were randomly distributed in the range 

1-q<hl<l+q  (11) 
The computer simulate curve IS shown in Fig. 1. It is quite in agreement with the  relevant ex- 

perimental results. C ' . 5 . 6 : ~ o s t  noticeable are  the experiments on sintered metal powdersC4.5.6:. We 
bellese that the very large attenuations obsorved in the previous experiments are  associate with a 



transition to  localized vibrational modes in s inter ,as  predicted for a percolating structure at length 
scales near the  percolation correlation length. Effective medium approximation calculations appear 
to  exhibit a large increase in the density of s ta tes  in the crossover region,the computer simulated 
curve is consistent with results outlinded above. 

Fig. 1. C o m ~ u t e r  simulate curve of the  density of vibrationai states for N= 1600 atoms system 
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