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Abstract. The dependence of the Weibull stress is investigated on the parameters of the elastic- 
plastic crack tip field. The general form of the Weibull stress is given for a three-parameter 
approximation of the elasto-plastic crack tip field. This is the basis to define a constraint 
correction of the critical value of the J-integral for cleavage fracture. 

1. INTRODUCTION 

Good agreement between theory and experiment is obtained, if the cleavage fracture probability in the 
ductile brittle transition region of steels is evaluated using the local approach [l]. However, a three- 
dimensional elasto-plastic finite element analysis has to be performed far cracked bodies in order to 
obtain the Weibull stress. Small variations of the stress field in the vicinity of the crack tip influence the 
value of the Weibull stress due to the high value of the Weibull exponent m. 

At the beginning of the ductile-brittle-transion region, the crack tip field can be analytically 
described in terms of the HRR-field [2,3], if ductile damage has not occurred yet. It is well known [4] 
that the Weibull stress is proportional to J , if the stress field ahead of the crack tip can be 
approximated by the HRR-field. 

Higher order terms of the crack tip field play an important role for low constraint specimens [5- 
71. It can be shown that a three-term approximation with two independent amplitudes is sufficient for 
commonly used specimens containing through-thickness cracks [S]. Hence the corresponding values of 
the Weibull stress depend on two parameters, the J-integral and a constraint parameter characterizing the 
amplitude of the higher order terms. 

The objective of this paper is to study the dependence of the Weibull stress on the constraint 
parameter for typical fracture mechanics specimens. The three term asymptotic expansion of the elasto- 
plastic crack tip field is summarised in the section 2.  Section 3 contains the evaluation procedure. 
Examples are given in the fourth section. 

2. THREE-TERM ASYMPTOTIC EXPANSION OF ELASTO-PLASTIC CRACK TIP FIELDS 

For a power law hardening material 
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the stress field in the neighborhood of a mode I crack tip under plane strain conditions can be described 
by the three-term asymptotic expansion [5,6]: 

In eqs. (1) and (2) oo is the yield stress; a is the hardening coefficient; n is the hardening exponent (n>l); 
EO=DO/E; E is Young's modulus; o, are the stress components or, D& and or@ in the polar crack tip 
coordinate system r, 0 ; g:) are the dimensionless angular stress functions which depend on n and are 

obtained from the solution of the linked asymptotic problems of zero, first and second orders; s is a 
theoretically known eigenvalue for the problem of zero order, s = -ll(n+l) [2, 31; values of an eigenvalue 
t have been determined numerically in [5, 91; F is a dimensionless radius: 

where J is the J-integral. We assume that the angular stress functions g:) and 6:) are normalized so 

that the maximum Mses equivalent stress is bounded by: 

where are the deviatoric stress components and 'max' means the maximum for all angles. The 

coefficient is equal to: 

The scaling integral I,, was introduced by Hutchinson in 121. The coefficient A is an amplitude parameter 
for the first and second order terms in the three-term asymptotic expansion of the crack-tip stress field. 
The value of A can be determined by fitting expression (2) using the finite element stress data in the 
region which is significant for the fracture process [g]. 

3. WEAKEST LINK MODEL FOR THE GEOMETRY DEPENDENCE OF J, 

Within the framework of the local approach [ l ,  41 the cleavage fracture probability Pf is given by 

with the Weibull stress o w  



where V,{ is the volume of the plastic zone; V ,  is an arbitrary unit volume; o~ is the maximum principal 
stress at a given point; m and o, are the Weibull shape and scale parameters, respectively. 

If the first term of the stress field, eq.(2), yields a good approximation of the crack tip field, it can 
be shown by a straightforward calculation [4] that the Weibull stress for a specimen containing a crack 
can be re-written as: 

where B is the specimen thickness, J, is the value of the J-integral at the onset of cleavage fracture and 
the integral does not depend on the load level. U,{ is the volume of the plastic zone given in terms of the 
normalized radius F, eq.(3), of a specimen of unit thickness. Eq.(8) is only applicable to two-dimensional 
cracks with a constant J-value along the crack front. 

Higher order terms of the stress field, eq.(2), are needed in those cases in which there is a 
significant loss of constraint. Then the transformation leading to eq.(8) can still be performed, but the 
integral depends on the amplitude A of the higher order terms of the crack tip field (see eq.(2)). Hence 
the Weibull stress is of the form: 

where M stands for the material parameters and oo is a normalization factor, e.g. the flow stress. The 
dimensionless function 

depends only on the value of A and hence on the load level and not explicitly on the crack size or the 
specimen geometry 

The value of the amplitude A under small scale yielding conditions is completely determined by 
the elastic crack tip field and the corresponding values of K and T. Hence the small scale yielding value of 
A, Assy , is identical with the value of A obtained by the modified boundary layer solution for small scale 
yielding, i e. the solution of an elastic-plastic boundary value problem with boundary conditions 
corresponding to the elastic stress or displacement fields in the near crack tip region given in terms of 
suitably selected values of the stress intensity factor K and the amplitude T of the second term of the 
elastic crack tip field. A special case is the elastic crack tip field with T=O for which the relation 
o, K K4'" [4] is valid. 

The following relation holds at a given value of the Weibull stress corresponding to a specific 
value of the failure probability: 

Eq.(l l )  can be used to transform the measured value of the J-integral, J c  , into a equivalent small scale 
yielding value Jssu. This implies that the failure probability, eq.(6), can be written in terms of a Weibull 
distribution for the transformed values Jssy with a shape parameter equal to 2. 
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4. PREDICTION OF JOJr, FOR TYPICAL SPECIMENS 

Four typical specimens are considered in this paper: 
(a) edge cracked plate (ECP); 
(b) center cracked plate (CCP); 
(c) three-point bend specimen (3PB); 
(d) compact tension specimen (CT). 

Limit loads for rigid-plastic bodies are used to normalize the applied loads: 

ECP: oL = 1.45500 :[-l W +/m) , 

CCP 

3PB: 

CT: PL = 1.45500 W[- - G + /m . 

The following material data are specified: 

Elasticity modulus, E E l oo = 500; 
Poisson's ratio, v =  0.3; 
Hardening coefficient, a = 0.5; 
Hardening exponent, n = 10; 
Yield stress, 0, = l ;  
Weibull shape parameter, m = 20 

All stresses are given in terms of multiples of ao. 
The Weibull stresses are calculated in two different ways. First an elasto-plastic finite element 

analysis is performed with the finite element code ABAQUS [l01 using deformation plasticity theory with 
small strain formulation. A typical finite element mesh (376 8-noded isoparametric elements of reduced 
integration elements, 1209 nodes, the smallest element r l lW = 1 0 - ~ )  for specimen configurations (a), (b) 
and (c) is shown in Fig. 1. The stresses reach very high values at the crack tip, as crack tip blunting is not 
taken into account. From large strain calculations it is known that the stresses approach a maximum 
approximately at a radial position 6 = 1. In this paper the maximum stress o is set to be constant along a 
radial ray F < 1 and equal to the value of maximum stress at the point F = 1 and the corresponding angle 
8. 

The numerical integration for a polar mesh of 8-node finite elements is performed in the following 
way. For the current value of the J-integral the original finite element mesh is transformed into a mesh 
with an outer boundary of the first element ring at f = 1 as shown in Fig. 2. The maximum stress o is 
constant along the radial rays of finite elements composing the first ring (element A in Fig.2). Stresses in 
the element B of the transformed mesh are obtained by bilinear interpolation of stresses in the element C 
of the original finite element mesh. Then Gaussian integration is carried out for all integration points 
situated inside the plastic zone. 

The second evalution method for G(A) is based on the three term expansion of the stress field, 
eq.(2). The integration is performed using the same mesh as for the finite element analysis. However, the 
number of evaluation points within a given element can now be increased in order to improve the 



Figure 1 : Finite element mesh in the vicinity of the crack tip 

ro,, /J 

Original segment 
of FE mesh 

Transformed 

segment of FE mesh 

Figure 2: Integration domains for the evaluation of the Weibull stress 

numerical accuracy of the integration procedure. The cut-off procedure for the singular stresses at the 
crack tip is identical with the one used for the finite element results. 

The function G for an edge cracked plate, a center cracked plate, a three-point bend specimen and 
a compact tension specimen with different cracks as a function of the normalised stress oloL or the 
normalised load PIPL are presented in Fig. 3-6. Values'obtained by integration of FEM stresses are 
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shown by points. Solid lines are the corresponding values obtained by integration of the three-term stress 
approximation. All values are normalised with the value of the function G which was obtained by solving 
the modified boundary value problem for T=O and very small values of K. It can be concluded that the 
Weibull stresses obtained by the three-term stress approximation agree with the FEM data fairly well, 
except some points for high loads, and some scatter in the FEM data which are clearly related to 
problems of the mesh. 

In Fig. 7, the normalised G-function is plotted as a function of the amplitude A. All the FEM- 
values are plotted as symbols. A closed form expression for the function G can be obtained by a curve-fit 
to the points shown in Fig.7. Good agreement was found for the following function (solid line in Fig.7): 

with the material dependent coefficients a , .  The following coefficients were obtained for the material data 
specified above: a ,  = 0.274; a,  = 2.22; a ,  = - 18.0. 

5. CONCLUSION 

The Weibull stress determining the failure probability for cleavage fracture can be expressed in terms of 
the J-integral  and the amplitude A of the higher order terms, if the elasto-plastic crack tip field is 
apprdximated by a three term expansion. A comparatively simple analytical expression is obtained by a 
curve-fit to FE-results obtained for fracture mechanics specimens containing through-thickness cracks. 
On the basis of these results a contstraint corrected value of the J-integral can be defined, if the values of 
J and A at fracture are known, and if the corresponding small scale yielding values are available 
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Figure 3: Critical value of the normalised J- 
integral at cleavage fracture; edge cracked plate; 
0 -  d F 0 . 1 ,  - - - d F O . 2 ,  
A - - -  a/w=0.3, 0 d ~ 0 . 4 ,  
* dw=O.S. 

Figure 4: Critical value of the normalised J- 
integral at cleavage fracture; centre cracked 
plate; 0 - a/w=O.l, -- - d ~ 0 . 2 ,  
A - - - d ~ 0 . 3 ,  0 d ~ 0 . 4 ,  
* d ~ 0 . 5 .  

1 normalised load 

Figure 5: Critical value of the normalised J- 
integral at cleavage fracture; 3-point bending 
specimen; 
0 -  a h ~ 0 . 1 ,  - - - a/w=0.2, 
A - - - d ~ 0 . 3 ,  0 - - - d ~ 0 . 4 ,  
* d F 0 . 5 .  

0 0.5 1 1.5 

normalised load 

Figure 6: Critical value of the normalised J- 
integral at cleavage fracture; CT-specimen; 
0 -  d ~ O . 5 ,  U - - - d ~ O . 6 ,  
0 - - - a/w=0.7. 
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amplitude A 

Figure 7: Critical of the normalised J-integral at cleavage fracture; 0 FE results; - curve fit using 
eq.(13). 


