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Abstract. We have measured the magnetoresistance and the magnetic phase boundaries T,(B) of meso- 
scopic superconducting structures containing an A1 loop. The structures were designed to study the nonlo- 
cal interaction between the loop and the electrical leads connected to it. Several voltage probes have been 
attached to the current leads to monitor the superconducting transitions of both the loop and the segments 
of the leads. Strong coupling effects have been found between the loop and the leads. At low magnetic 
fields, T, ( B )  of the lead segments reveals a pronounced oscillatory component, while the oscillation am- 
plitude of T,(B) of the loop is significantly reduced when compared to the usual Little-Parks effect. The 
coupling strength seems to be controlled by the temperaturedependent superconducting coherence length. 

1. INTRODUCTION 

Mesoscopic superconducting structures are of strong interest as potential new components for the low tem- 
perature electronics. The quantum interference effects in small superconducting loops make them in prin- 
ciple suitable as flux sensitive devices. 

It is well known that the magnetoconductance for mesoscopic samples obtained from a four terminal 
measurement is also influenced by regions of the conducting structure outside the voltage probes [I, 21. 
Due to the nonlocal nature of the electron wave function, all interference processes occuring within the 
phase coherence length L,  contribute to the measured conductance. The nonlocality becomes particularly 
obvious when a loop is connected to a line, since in that case the Aharanov-Bohm effect in the loop is 
reflected as an oscillatory contribution to the magnetoconductance of the line. While the nonlocal contri- 
bution to the conductance of normal metal structures is rather small (about e2/h x 4 . 10-5R-1), very 
pronounced nonlocal effects should be observable just below the superconducting transition temperature 
T,, where the conductance is dominated by the presence of the superconducting condensate. Here, we will 
concentrate on the fundamental properties of mesoscopic aluminium loops as well as their applicability as 
magnetic flux sensors. 

We have studied square loop structures connected to electrical leads for transport measurements. A num- 
ber of voltage probes attached to the leads allow the measurement of the superconducting transitions of the 
loop and of certain segments of the leads located at various distances from the loop. The Little-Parks ef- 
fect [3] in the loop induces oscillations with flux period Qio = h/2e in the magnetoresistance and in the 
normal/superconducting phase boundary T,(B) of the lead segments. On the other hand, the amplitude 
of the Little-Parks oscillations in the loop itself is strongly reduced by the attached leads. When the su- 
perconducting coherence length [ ( T )  diverges near T,, the loop and the leads are expected to be strongly 
coupled via the proximity effect while they should behave independently at lower temperatures where [ ( T )  
decreases. 
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2. EXPERIMENTAL 

Samples were prepared by thermal evaporation of 99.999% pure A1 onto oxidized Si wafers. The patterns 
were defined using standard electron beam lithography with a bilayer PMMA resist and lift-off techniques. 
Scanning electron and atomic force microscopy confirmed the presence of a smooth A1 surface with no 
major cracks or holes down to the nanometer scale. The superconducting coherence length ( ( T )  = EGL ( I - 
TITco )-'/%an be estimated using EGL = 0.85 ( E o  1,1)'/2, where to = 1600 nm is the BCS coherence length 
of Al, TcO being the transition temperature in zero magnetic field and le1  the elastic mean free path. We 
will discuss a series of samples prepared under identical conditions during a single evaporation run. The 
relevant material parameters for this series of samples are the film thickness t=43 nm, the sheet resistance 
Ro=0.6 R, lP1=18 nm and ( ~ ~ = 1 2 5  nm. 

The inset in Figure 1 shows the schematics of a typical A1 structure. It consists of 0.13 pm wide strands, 
interrupted by a square loop of 1 pm outer diameter. With our design we can measure the voltage across 
a 1 prn segment of the leads on both sides of the loop as well as the voltage across the loop itself. The 
distance L between the inner voltage probes and the loop is varied between 0.2 and 2.0 pm. The linewidth 
of the current and voltage leads is kept constant at 0.13 pm up to a distance of 7 pm from the sample to 
minimize the influence of the wider parts of the contact leads on the measurement. The magnetic field is 
always applied perpendicular to the sample. 

The transport measurements have been performed using a PAR 124A lock-in amplifier for ac measure- 
ments at 27 Hz and measuring currents of 50 and 100 nA rms. All electrical leads are shielded by pi filters 
with a cut-off frequency of 1 MHz. The normal/superconducting phase boundaries have been measured 
by tracing the midpoint temperature of the resistive transition with the aid of a feedback technique while 
ramping slowly the magnetic field. The temperature stability of the feedback circuit was about 0.1 mK. 

3. RESULTS 

In Figure 1 the measured normal/superconducting phase boundaries T,(B) of a loop and a lead segment at 
a distance L = 0.2 pm to the loop are shown. The loop shows the expected Little-Parks oscillations with a 
field period A B  = 2.7 mT corresponding to one flux quantum in the loop as estimated from the loop size. We 
observe an unexpected and pronounced increase of the oscillation amplitude ATc(B) with increasing field. 
Previous measurements on A1 microcylinders [4] have revealed a field independent oscillation amplitude, 
which is also in agreement with the theoretical model calculations [5]. On the other hand, the lead segment 
clearly shows oscillations at low fields which, are rapidly vanishing when the field is increased. 

The solid and dashed lines in Fig. 1 correspond to the theoretical phase boundaries of isolated loops and 
leads, respectively. For a superconducting microcylinder in an axial magnetic field one obtaines from the 
linearized Ginzburg-Landau theory [4]: 

Here, Q = n Rk B is the magnetic flux enclosed by the loop, R,,, being the effective radius of the loop, 
d the linewidth and z = d/2R, its aspect ratio. The integer n has to be chosen to maximize T,(@) for a 
given value of @. The envelope of Tc(Q) for a cylinder is identical to the phase boundary Tc(B)  of a thin 
film in a parallel magnetic field [5]  : 

For mesoscopic samples Eqs. (1) and (2) remain valid for perpendicular fields, provided [(T) >> d [6]. 
This condition is always fulfilled in the temperature range under consideration. When d is known, tGL can 



be determined by fitting Eq. (2) to the measured envelope of the phase boundaries. Using the linewidth 
determined via electron microscopy, we find values for the Ginzburg-Landau coherence length which vary 
within a series of samples by not more than 4 % and are in good agreement with the (GL values obtained 
from the mean free path I,,. Since EGL is determined by the monotonic background, the theoretical oscilla- 
tion amplitude for an isolated loop is not a free parameter and can be directly compared to the experimental 
data for the loop with attached leads. When the field is increased, the oscillation amplitude approaches the 
theoretical value. 

A lead - 

Fig. 1: Magnetic phase boundaries of the loop (voltage con- Fig. 2: Nonlocal contribution to T,(B) of the line seg- 
tacts Vl/Vi) and one of the lead segments (voltage contacts ments. The parabolic background contribution due to the fi- 
V1/V3) for L = 0.2 pm distance between the loop and the nite linewidth (Eq. 2) has been subtracted for clarity. 
line segment. The inset shows a schematic of the sample lay- 
out. 

To illustrate the nonlocal effect of the loop on the leads, the phase boundaries of a series of samples with 
increasing distance L between the measured lead segment and the loop are shown in Fig. 2. The transition 
temperature of the leads clearly oscillates as a function of B. In order to better resolve these smaller oscil- 
lations in the lead segments, we have subtracted from the measured T,( B) curves the monotonic parabolic 
background described by Eq. (2). The oscillation amplitude decreases with increasing field until it disap- 
pears in the experimental background noise. The oscillations gradually disappear at smaller fields when 
the distance between the measured line segment and the loop increases. 

Experimental evidence for the nonlocal Little-Parks effect had already been reported in [7]. However, 
the latter study has been complicated by the presence of strong resistance anomalies at low fields B 5 
1 mT. At these low fields the resistance is strongly enhanced and can even exceed the normal state resis- 
tance. These anomalies, which are related to nonmonotonic transitions in R(T) ,  have been observed In 
mesoscopic aluminium samples of different geometry during the past few years [8,9]. Very recent experi- 
ments [lo] indicate that the anomalies can be suppressed by proper radio frequency filtering of the electrical 
leads. A possible explanation for the anomalies in terms of charge imbalance around phase-slip centers in 
the small samples has been proposed 110, 111. In Fig. 2 small low-field anomalies are still present, which 
are probably induced by residual sf radiation. 

It can be seen from Eq. (2) that at the phase boundary the magnetic field and ((T) are related by: 
l /E (T)  = (T d ) / ( &  (Do) . B. Hence, the change of the oscillation amplitude with increasing magnetic 
field directly reflects the dependence of the coupling strength on the coherence length. In Fig. 3 the os- 
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Fig. 3: Oscillation amplitude A T,(B) versus inverse coher- 
ence length for a loop (top panel) and the lead segments from 
Fig. 2 (bottom panel). Note the different scales for the AT, 

isolated loop m *  

axes. 1/5(T) (wm.') 

cillation amplitudes A Tc for the loop (top panel) and different lead segments (bottom panel) are plotted 
as a function of l / [ ( T ) .  A Tc of the loop increases with increasing l / [ ( T )  as opposed to A Tc of the lead 
segments. The dashed line in the top panel of Fig. 3 corresponds to the the limiting case of the oscillation 
amplitude of an isolated loop with the same [GL. 

4. DISCUSSION 

The results presented above demonstrate that the loop cannot be considered separately from the leads con- 
nected to it. While the transition temperature of an isolated loop oscillates with a constant amplitude as a 
function of the magnetic field, the phase boundaries Tc(B)  of the leads should be monotonic in the absence 
of the nonlocality. Connecting the loop to the leads has an effect on both of them - the oscillations in the 
loop are strongly damped and T,(B) of the leads reveals an oscillatory component. As inferred from the 
observed temperature dependence of the effect, this phenomenon can be linked to the stiffness of the super- 
conducting order parameter. In contrast to an isolated loop or a microcylinder, the loops in our structures 
remain superconducting until the pair breaking by the circular current, which is required to maintain the 
fluxoid quantization in the loop, is sufficient to drive a certain fraction of the leads into the normal state as 
well. As illustrated in Fig. 3, the length scale determining the coupling strength is indeed the coherence 
length [ (T) .  The problem of a loop with attached leads has been treated theoretically in the limit of van- 
ishing linewidth - Fink et al. [12, 131 have found that the leads indeed reduce the oscillations amplitude 
of Tc(B)  of the loop when compared to an isolated loop. However, the theory overestimates the coupling 
strength by assuming a single transition temperature for the whole structure. This assumption cannot hold, 
when the strands are much longer than [ ( T ) .  As confirmed in Fig. 1, the background depression of T, due 
to the finite linewidth is still negligible for the first oscillation period. Even in this case we find that the 
difference between the transition temperatures of the loop and the leads is nonzero though considerably 
smaller than the Little-Parks effect of an isolated loop. 

A strictly one-dimensional theory can also not account for the observed crossover from coupled to de- 
coupled behavior, since the decoupling is induced by the background depression of Tc(B)  due to the finite 
linewidth. Once Tc has been sufficiently decreased by the magnetic field [ ( T )  becomes smaller than the 
loop size, the coupling weakens and the experimental phase boundaries gradually approach the behavior 
of the isolated systems. 

The flux sensitivity of our small superconducting loops is also reflected by the critical current I,(B) 
of the loops. Close to the transition temperature a SQUID-like modulation of Ic(B)  is found, although 



the loops do not contain any artificial weak links [14]. In near future this SQUID-like behavior may be 
exploited for the design of small and simple magnetic field sensors, which are suitable for magnetization 
measurements on single mesoscopic samples. 

5. CONCLUSIONS 

We have shown that a mesoscopic superconducting loop and the leads connected to it form a strongly cou- 
pled system. The mutual nonlocal influence is due to the divergence of the coherence length near the transi- 
tion temperature and is suppressed at lower temperatures. Although simple one-dimensional models cannot 
account for all of our observations, a qualitative interpretation in terms of the proximity effect is possible. 
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