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Abstract. The article presents a theory able to calculate various phenomena of martensitic
unelasticity as well as of dislocation plasticity. The theory is based on the structure-analytical
conception. The developed methodology accounts for such fundamental phenomena as kinetics of
martensite crystals growth; influence of temperature, stress and neutron radiation; influence of non-
homogeneous strain of dislocation origin and its dependence on diffusion and radiation damage, etc.
The developed theory allows to predict mechanical behaviour of crystals under an arbitrary
thermomechanical and radiation effect thus making possible to solve numerous applied problems.

Introduction. Calculation of unelastic strains developing due to various processes in solids is
a very complicated problem. It is not finally solved both in solid state physics and continuum
mechanics. At the same time recently developed structure-analytical theory of strength [1,2]
presents the ground to deal with this problem. According to this methodology on the first
stage micro strains corresponding to each specific process of mass transfer are calculated.
Then the micro strains are summed on all orientations, physical and statistical variables with
the aim of passing to the notions of continuum mechanics. On this stage, calibrating fields are
added to the mean potentials and this allows to satisfy all conservation laws including those
of the symmetrical character both for micro and macro levels. The described technique
provides' good agreement with direct experiments [1] and this opens the perspective of
solving more and more complicated problems. The present communication suggests the
system of equations for calculating strains due to martensitic reactions, diffusion, radiation,
elasticity, heat expansion and dislocation plasticity.

Let us agree that all the quantities refer to the crystal-physical basis u, v, w of an austenite
grain. We shall consider austenite to be an initial state. Then the heat expansion strain rates

. ; 3T C g : AT s T _ b '
for austenitc zf; and for martensite B, are By —qu(XipquAbM +6ip6kqAbA)T,
where T is the temperature; dot means time derivative, ¥, are components of the rotation
matrix characterizing the orientation of a crystal physical basis relative to the parent austenite
crystal. Index "b" here and everywhere further denotes "A" or "M" which means "austenite"

or "martensite"; y}’k are the tensors of heat expansion coefficients referred to the own crystal

physical bases of austenite and martensite; symbol A; has the values Agp = Apypm =1,
Ama = Aam = 0, Oy is the identity tensor.
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For elastic strain rates we write bB?k = (Crhsqu 4 —rlts bTp TJ(XierlXthqubM + 5ip5kqAb A),

where C?kpq are elastic moduli tensors of austenite and martensite referred to their own
crystal physical bases; 1y is the micro stress tensor connected with the macro stress tensor in
the orthogonal laboratory  basis X, Y, Z by the evident relation:
blik = %pQsq(XipXkqAbM +dipSrgBba )Ors, Where oy cosines are of the angles between the
axesu, v, w and X, Y, Z.

The rate of unelastic micro strain due to a direct martensitic transformation of the first
order can be described by the formula 3$ = D@, where Dy is the transformation strain

tensor and @ characterizes the size of the martensitic crystal.

Dislocation shears in martensite and austenite crystals also contribute to the total micro
strain. Followihg the ideas of {1,2], we introduce an orthogonal basis I, m, n  of slip
directing. The basis vector n is normal to the shear plane and allows shearing in any
direction in this plane. Then we may write for the shear strain rate

. =T
oB5 = Av %(T:) - pto (TP - 7 Ju(1? - bT'f,)(X?pXﬁqAbM +8ig8kghba)

1

= / /
Here Ty =b Ty (8i18k3 +Ok18i3) + 15,(8i20k3 + Bk 28i3), and
bfi/k = arpasq(X?pxl(:qAbM + +3ip8kqAbA )Gis; G{k is the effective stress in the place where

shear takes place in austenite (when b = A) or martensite (when b =M) grains; X?k are the

directing cosines between the axes of the orthogonal slip bases (I,m,n) of austenite and

(1°,m%,n°) of martensite; is the crystal physical yield limit; Ti is the crystal physical flow

S
blo

1/2
. . | . . .
stress; Ay is the hardening constant; Ttb = (—2- btirk btirk) is the intensity of shear stress

acting on the slip plane; H(x) is Heaviside's function. When the strain hardening is linear we

172
. —1y- . 1 g4 . . .. .
have ti = b‘tso + Abll"b, where Fé’ = (5 II:B?I( lljﬁ?k) is the shear strain intensity rate.

If we neglect aging, then it may be possible to write an evolution equation for bt(s) say

in the form [1]: b"cf) = —x,T +othTl'"'é’(l'"é’)o‘_1 + btiv - q)c—(Ub/kT)('ci - bTi ym .
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b‘tiv _ BB&(W)ﬁ*lJ _ ch—(Ub/kT)( b‘iv)u(l + bBoJ)B"' 1+ anEE +uBm _mb , Wwhere Ky,
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[o] [}

Py, o, 1, Uy, m, ,B, 8, tBy, uBm» > Bs Bt’”, bBo» 80-Yo are constants characterizing
materials properties; J and W are the intensity and dose of radiation; nb, ng are the actual
and thermally equilibrium vacancy concentrations; mb, mg are the actnal and thermally
equilibrium concentrations of interstitials, bT; is the equilibrivm crystallographic flow stress.

Rather good approximation for bti can be made in the form [3]:

- o - . -
bti = t}i -xpT + PbT(I“é’ ) + b’CiV , where rg is a micro stress limit distributed statistically

around its mean value ytp. The sum of ﬁi(l)i’ B bﬁilic’ I;ﬁ;q micro strains after averaging

on all orientations and other statistical variables will give the macroscopic strain tensor e -

Tensor ye;, still does not represent the total strain. One should add to it if necessary the
strain produced by diffusion and the strain stimulated by radiation.

R
! . . D .
The first one can be described by the equation: béﬁ( = AEDCV o‘ikRﬁ - bAngﬁik, where
R=n® for vacancies and R=m® for interstitial; nb, m® are vacancies and interstitial
concentrations; AE, bAg are materials constants; DE is the diffusion coefficient for

vacancies (when R:nb) or interstitial (when Rzmb) in austenite (when b=A) and martensite
(when b=M).

Radiation stimunlated strain rate can be determined by equations bégk = A Dev(oy - bp;k s

b b Y

L g m
[Iz( bPik)] (1 + 45 J) {1+4D, Bg +uDm 5 bRy where
n
0

(o]

o J ~(U/KT)
bk = b b —ape P

bAps pN1 2ps Uy, L vE5> & vDp> pPm» S are constants, bp;kk is the tensor of effective

calibrating ficld arising due to heterogencous mass transfer caused by radiation effect on the

* . . -
crystal, I2(bpik) is the second invariant of the tensor bP:k .
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It is natural that the above relations should be complemented by point defects balance
ions: R = DR b, aby, ab b b ab{ .a a2
equations: R = Di'V;ViR - (R - R}/ 1 + AJ.J +An"m" + Ag(bsik bsik)

Here V; is the nabla operator; Ry = ng for vacancies and R = mg for interstitials; rg

is the life time of a point defect; A}’, Ab, AE are constants; bé;’k is the macroscopic sirain

due to dislocation slip.

In the system presented above still undefined are variables c{k and ®. According to the

logic of [1] potential G{k must take into account two factors: the effect of stress S and the

cffect of some calibrating field p;i, the addition of which allows to satisfy the requirements

of conservation laws of the kinematical and symmetrical character both on the micro level in
notions of the solid state physics and on the macro level in the notions of continuum

mechanics. This can be done if we introduce the following relations: d{k = Gijk — bPik

b
b b
; . ~(UP/KT) K 2 m
Wik = 6T bE e 1 4 [Iy(peac) —4G] P (1+ CyY) + DY g2
n
(o] (o]

=
<o

sign| o+ =5 = 2 | H[I(40ix) ~ 4G, Pik -
nO mO

Here y1g, rlb R Uf, 1G> Ky, Cy, Dg, M- are constants, "sign" is the sign-function.

If we agree with the existence of the calibrating field ppjx, we must assume that the
crystal after the dislocation shear is likely to be divided into two sub-regions in one of which
(where the slips are going on) the field ypy is present and in the other (where there are no

slips) the field - A pj of the opposite orientation arises. Therefore one can speak of some

effective tensor potential Y Fo=oy + ag bPik> Such that when Pg is "+": ag =+B>0, and
o o

when P, is "-" a‘; = A<O .

This remark becomes significant at analysis of the martensite crystals growth kinetics as in
accordance with the requirements of thermodynamics it is dependent on the mechanical

potential that is on 3, ﬁf and thus on whether pg is "+" or pg is "-".

Indeed in conformity with the Clausius - Clapeyron equation we can propose the

equation for effective temperature T; which univalently specifics the state of a martensite or
o
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austenite crystal: T; =T—(To\q0)ocpiocquik b g"q . Here T, is the temperature of
o

thermodynamic equilibrium, q,, is the thermal effect of the reaction.

"o

Micro strain f3$ will have different values depending on parameter py ("+" or ) so we

have to write Bﬁf = Dy ®P. Then the total martensitic unelasticity micro sirain rate can be

found by averaging: Eg: :(1+C)_1(B& +CB§() In this case the mean martensite

concentration will be @s = [ds jf(Q)(p(S)(l+C)_1((D_+CCD+)d3Q and crystals with any
s} {o}

specified value of parameter "s" appear in a quantity: Oy = J ()1 +C)’1((D_ +CcohHdia.

{o}
Let us now calculate the quantity ®P° Here we must say that there is a number of
peculiarities in the case of the first order transformations. Firstly, one must distinguish the
stages of direct and reverse transformation because of the noticeable hysteresis. Secondly, the
kinetics of the reaction is determined both by temperature T and stress o in accordance
with the effective temperature T. Thirdly, the transformation is characterized by the
temperatures Mg and Ag for the start and My and Ag for the finish of direct and reverse
transformations which depend on the statistical parameter "s". Fourthly, as the experiment
shows, the specific crystal of martensite or austenite can not be larger than some definite
size which we denote by @, and @}, respectively. Fifthly, the specific crystal never grows
through the entire volume of a body but is usually restricted for example to the size of a
grain. At last, sixthly, if the material is subjected to radiation, large changes must take place
in it according to two causes: (1) due to accumulation of radiation damages which affect the
characteristic temperatures Ag, Mg, Ag, Mg (they become functions of the radiation dose W),
(2) due to displacement peaks formation, which causes the reverse transformation
proportionally to the factor of ®J.

Considerations given above allow to write down the evolution equation for ®Pc,
which is valid when Ag- Mg~ Af - Mg:

@Po = —T;D{H(—T;)H(l - oy)H(@, - 0P )H[Ms - P (M, - M¢) - T ](Ms M)

+H(T;0>H((DM)H((DP° - (Dh)H[T;O + q)p"(Af - AS) - Af](Af - As)—l} -

*

—al| @PoH( @ ) - Dy E:I—S:—I—;I)iH(MS - T, JH( - @) |,
s~ M °

where a is a constant.
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All the above equations are nevertheless insufficient to solve arbitrary tasks. One must
still take into account the rules of the material's behaviour of the austenite and martensite
mixture as well as the laws of the inheriting of stress fields and strain hardening at direct and
reverse reactions.

Elastic and heat expansion strains are determined by the mixture rules. Therefore

Bl = OPoxipitigB + (1 - @7 )B4,

T T
T _ o M A
By = @P fxipxqupq(x)dx + (1 - (I>p°)_[yikdx - xpiququ(l — @Po )
o Q
The further problem is the necessity of accounting for the inheriting of strain hardening at

martensitic reactions, determined by the factor 'ci - brf), and of calibrating oriented stress
pPik- Stresses pp, grow at the rates ppg . Then the rate of their variation with the account of
- . o - - — -0 . ¥ - _ -Q 3 - - .

inheriting is | Py = wPik T a PikPs, ,Pik = 2Pik ~ MPik‘DZ- It is these tensor fields uPik

and , pji that should be taken into account when phase composition is calculated. Similarly

we shall calculate strain hardening. Total strain hardening rate of austenite and martensite
accounting inheritance are: i(s)M =ty + ARll"é\d)Z, "cf) A= "c; + A;\dlr[?lléz. Analyzing all
the suggested equations one can conclude that they allow to solve a very wide scope of tasks
on predicting the mechanical behaviour of crystals undergoing martensitic reactions,
dislocation plasticity, diffusion and effect of radiation.

Conclusion. Suggested formalism, though the equations are somewhat cumbrous, is to the
author's opinion clear in its physical contents. As the practice of its application to specific
problems has shown, it can correctly describe practically all known regularities of the
mechanical behaviour of alloys with thermoelastic martensitic transformation. Details one can
find in [1].
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