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We have constructed a Landau-Ginzburg model of ferroelastic domain walls in the tetragonal 
phase of CsCi-type intermetallic compounds. This improper ferroelastic phase transition is driven by 
the condensation of a degenerate zoneedge phonon mode of M; symmetry and can be described by 
a six-component order parameter. Analytic and numerical kink-type soliton solutions for the order 
parameter profile and the strain distribution are obtained for three different interphase boundaries: a 
twin boundary and two antiphase boundaries. The stability, merging and splitting of various domain 
types are also studied. Specifically, a symmetry-allowed product phase of I4/mmm (D::) symmetry 
has been experimentally observed in pseudobinary rare earth alloys of composition RAgl-, In, 
(R=La, Ce, Pr) and in related systems (YCu, LaCd). 

I. INTRODUCTION 

The study of various types of domain walls and their energetics in the context of both first and second order 
structural phase transitions has been carried out in recent years for ferromagnetic, ferroelectric and ferroelastic 
materials. Two kinds of domain walls, namely antiphase boundaries (APB) and twin boundaries (TB), occur in 
materials where the former are characterized by pure translations and the latter by rotations but not pure translations. 
Within the Landau-Ginzburg formalism a few analytic solutions for these domain walls can be obtained for relatively 
simple free energy functionals. However, it becomes an increasingly unwieldy task to classify and study all possible 
domain walls when (i) the primary and/or secondary order parameters are multi-component, (ii) there are several 
independent invariants in the gradient (Ginzburg) part of the free energy. 

Here we identify possible interphase boundaries based on a systematic and comprehensive group theoretic treatment 
of domain walls using the concepts of the direction of the order parameter (OP) and the isotropy group of a domain 
class. For a given phase transition, this technique allows us to (a) construct all independent gradient invariants, (b) 
classify possible homogeneous phases, (c) classify all equivalent domains and domain pairs, (d) obtain criteria for the 
stability, merging and splitting of domain walls, (e) determine secondary OP and their effect on the domain walls, 
and finally (f) calculate the OP profile, domain wall energy and width. This technique has wide applicability in 
ferromagnetic, ferroelectric, ferroelastic, high T, superconductors (perovskites) and other materials. 

We employ this technique for studying ferroic phase transitions occurring in materials with CsCl structure (space 
group Oi, Pmzm) induced by M; mode softening, specifically a first order, improper ferroelastic transition to a 
tetragonally distorted low symmetry phase (Di:,  14/mmm) in the pseudobinary rare earth alloy LaAgl-,In, (x-0.2) 
[I]. The crystal structure is shown in Fig. 1. We have previously identified the six-component primary OP, nineteen 
secondary OP (including strain) and presented the Landau free energy (LFE) [2]. The class of OP directions consistent 
with the M; irreducible representation and the observed atomic displacements is Plo which has twelve equivalent 
directions (or domains) associated with it. In this work we find five gradient invariants. In the analysis of domain 
pairs we find only one class of twin boundaries, and two distinct classes of antiphase boundaries, denoted {1,2), {1,4) 
and {1,10) respectively. Here the integers represent the selected directions (or domains) of the OP class Plo and 1, 2, 
4, and 10 denote {a,a,O,O,a,-a), {0,0,a,-a,a,a), {-a,-a,O,O,a,-a) and {-a,-a,O,O,-a,a), respectively. The (soliton like) OP 
profiles, strains, stresses, energy, domain wall width are calculated and the constraints on the free energy coefficients 
are determined for each interphase boundary. Below we consider the {2,3) TB instead of {1,2) since the former is 
mathematically more convenient to analyze. 
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11. GINZBURG-LANDAU FREE ENERGY 

The Ginzburg-Landau free energy (GLFE) for this transition is given by 

F(vi, 9i,j) = p ~ ( 9 i )  + F~(G'i,j)l 

where FL(qi) has been given to sixth order in 9 in Ref. [I]. Here r] = (91, 92, 93, 94, 75, 96) is the six-component 
primary OP. In addition, FEL, the invariants in strain (the secondary OP) and Fc, the coupling of strain with the 
primary OP, are given up to fourth order in Ref. [I]. In this work we also obtained five gradient invariants in q,, from 
the symmetry of the primary OP and checked them against invariants generated by computer using the ISOTROPY 
program 131: 

+ D ~ I V ~ , ~ ~ ~ ~ , ~  - ~ 2 , 2 ~ , z  + 73,273,~ - 94,294,y + 95,yt)5,2 + 96,y~6,11, 

where vi,m = 2 (i=1,2, ... 6; m=x,y,z). Euler's equations lead to six coupled partial differential equations in qi 

and three equations in stress 

where the stress is uij = E. In a homogeneous phase, the stress is zero everywhere, i.e. aij = 0, from which we get 
- ., 

= 0,1= 1,2, ..., 6 (using the contracted Voigt notation). 
%he OP gradient terms describe the generalized "exchange" interaction between neighboring domains in a material 

with spatially varying OP. The OP gradient coefficients for the GLFE pertaining to the above improper ferroelastic 
transition driven by the softening of the M; mode can be determined from the dispersion of the phonon branches 
into which the soft mode frequency splits along the principal symmetry directions in the vicinity of the M point. We 
note that the gradient coefficients are related to the curvature of the phonon dispersion curves. 

The same crystal structure can occur at several orientations relative to the parent phase. These domains correspond 
to various directions in the representation space. If the OP of one domain can be transformed by a group operation to 
that of another domain, these domains belong to the same class. From solutions for honlogeneous phases we find the 
values of order parameters, which are then used as boundary conditions for the heterogeneous problems. We note that 
the elastic and coupling terms renormalize the coefficients of five fourth order invariants Ai to A: in the Landau free 
energy expression. This is consistent with the conclusion of the Landau theory that the symmetry of phases below Tc 
is entirely determined by the symmetry properties of the primary OP; i.e., the secondary OP's have no effect as far 
as crystal symmetry is concerned. The coefficient (k) of the second order invariant in LFE remains the same after the 
transformation. This verifies our procedure since it does not change the critical temperature Tc, which is determined 
by k(Tc) = 0. Compared to similar previous work [4] on phase transitions our free energy expression has the extra 
term of Ah. 

The primary OP that belongs to the minimum of the irreducible representation M i  as listed in the Tables by 
Stokes and Hatch [5]. For a domain of the Plo type we find that the free energy is, 

with a = [-k/(16A{+8A;+4~;-4Ah)]'/~. Since the free energy of a homogeneous stable domain or phase is generally 
negative (because lower symmetry domains are energetically more favorable than the higher symmetry phase), we 
assume that the denominator in the above equation is positive. For the domain Plo to be stable: 



111. INTERPHASE BOUNDARIES 

Any domain can be chosen as a representative for a given domain class. The group elements that do not change 
the order parameter of a domain form the isotropy group, F, of the domain. F must be a subgroup of Go (space group 
of the high symmetry phase). For the class of directions Plo the subgroup is Dii .  All domain pairs can be separated 
into domain pair classes. Domain pair classes can be determined by the decomposition of Go into disjoint double 
cosets: Go = F(')~F(') + ~(')t i ,zF( ')  + ... + F(')ti,,F('). Each of the double cosets transforms domain Pi into P, and 
determines the class of (P(i), P(r)) .  For the transition we are considering we obtain one twin boundary pair class, 
denoted {1,2), and two distinct antiphase boundary pair classes, denoted {1,4) and {1,10). 

Two ferroelastic domains can be distinguished by their spontaneous strains. In a ferroelastic crystal, the domain 
wall direction between two domains is along some specific direction. Assuming that in the domain wall the change 
of length of any infinitesimal vector due to the spontaneous strain should be the same for the two domains, i.e. 
i ( T  - T1)x = 0, where T is the strain for one domain and T' is the strain for another domain. If a group operation 
A transforms one domain into another, then their tensors transform as follows: ~ T A  = T'. Thus, for ferroelastic 
domains 1 and 2, we have the equation: (a - b)(y2 - 2') = 0. Then, y = * z  defines the domain wall for domains 1 
and 2, i.e, for the domain pair {1,2). A similar process leads to domain wall orientatins for the other domain pairs in 
this domain pair class. 

We can also determine the conditions for merging and splitting of various domain walls, which are driven by the 
tendency of the system to achieve the minimum energy. In the merging or splitting relationships, the two pairs in 
each equation have one domain in common, and the two pairs meet by this common domain, i.e. {1,2) + {2,4) is 
applicable to the following while {1,2) + {4,2) and {1,3) $ {2,4) are not. APBI + T B  + TB, APB2 + T B  + TB, 
APBz + APBz -+ APBl,  T B  + Ti3 -+ TB and APBl + APBz -+ APB2. We have considered APB boundaries for 
the APB direction along a crystal axis and also at  an angle B to a crystal axis. 

I. T h e  {1,10) ant iphase  boundary is formed between Dl(ql) = (fia, O,O, O,O, f i a )  and Dlo(pt) = 
(-fia, 0,0,0,0, -t/2a). New O P  components have been defined where I): = + v2), 175 = - '72) etc. 
This antiphase boundary is formed by half a lattice constant tmnslation of the lower symmetry phase along the z 
direction. The homogeneous solutions (homogeneous domains) serve as boundary conditions for heterogeneous so- 
lutions and thus rll =$(%). The common set F('V") = F(') n F('O) = F(') keeps the domain pair invariant. The 
displacement pattern d = {(a, a,  0), (-a, a ,  0), (a, -a, 0): (-a, -a, 0)) of the four Ag (In) atoms positioned at  (0, 0, 
O), (1, 0, O), (0, 1, O), (0, 0, I) ,  respectively is determ~ned from the invariance under F(') = Dl7. Similarly, the 
displacement pattern for the center cubic La atoms positioned a t  ( f ,  f ,  f ) ,  (3, f ,  f ) ,  (4, $, f ) ,  ( f ,  $), respectively 
is found to be d = {(0,0,2a), (0,0, O), (0,0, O), (0,O - 20)). For an antiphase domain wall to exist, the shears in the 
wall are generally zero, i.e. 031 = 0, ~ 3 2  = 0. The strains, ejs, satisfy compatibility relationships [6]. 

We get two coupled differential equations in q: and r); .  For a linear type solution (7: = 96) we get 

where tape is the half width of the antiphase boundary and K+ (and a,  kt below) are algebraic combinations of A:. 
The strains el and e2 still keep the same values as that of the homogeneous phase and thus have no dependence on z. 
On the other hand, the strain e3 in the direction perpendicular to the domain wall is dependent on position. We find 
that there is a contraction in the z direction AL3 = Au3(+co) - Au3(-oo) where Au3(z) = us(z) - u r  . The stress in 
the z direction a33 is zero, which shows that we do not need to apply forces in the direction perpendicular to the domain 
wall, along which there is a contraction. However, u11 = 022 are nonzero. Therefore, in an experiment to determine 
properties of such an antiphase domain wall, we need to apply forces parallel to, but no forces perpendicular to, the 
domain wall in order to maintain this structure. The domain wall energy, which we define as the thermodynamic 
potential difference of the crystal with a domain wall and the crystal in the homogeneous phase, is 

where ~ A P B  = xAPB. 
In the higher symmetry phase (in this case O:),  k is greater than zero. As temperature approaches the critical 

temperature T,, k will approach zero. Thus, if CI1 > C12, then k'lk < 0. This implies that before the homogeneous 
phase transition, the splitting into different domains has begun. In the lower symmetry phase, k < 0. If Cl1 < C12 
and 3 9 1  > 2Cl2, then this antiphase domain structure will be stable. Otherwise, the antiphase structure will be 
unstable. 
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FIG. 1. Doubly-extended structure for the D:; tetragonal low-temperature phase of La&-,In, with atomic displacements 
(After Ref. [I]). 

FIG. 2. Representative numerical solutions for kink-like domain walls for (a) {I, 10) and (b) {1,4) antiphase boundaries 



We also explored the more general case by allowing the antiphase direction to form an angle 0 with the crystal z 
axis. The coordinate transformation (with fixed origin) does not change q but the strains and gradient terms become 
a function of 0. From = 0 we find that 0 = 0°, 90° are solutions for stable configuarations. 

The q$ = qi = 0 and q; = r/G constitute a linear type of solution as obtained above. We also considered a rotational 
type of solution by setting q; = q& = Q1,  q: = q& = Qz .  The stability conditions for this linear type of solution are 
very specific. If these conditions are not satisfied, such as in the temperature range far from the critical temperature, 
the anti-ferroelastic components (q i ,  r);) will not be zero. Then we can get rotational solutions: 

where hi are combinations of A: and elastic constants. However, this solution is stable under very strict conditions. 
Therefore, the assumption of linear solution above (4 and q; can be considered to be equal to zero) is likely to be 
true in most realized situations. 

11. The  {1,4) antiphase boundary is formed between Dl(q)  = ( d a , O ,  O,O,O,@a) and 040))  = 
( - d a ,  O,0,0,0, a a ) .  This antiphase boundary is formed by half a lattice constant tmnslation of the lower sym- 
metry phase along the x direction. This domain pair is invariant under ~ ( ~ 2 ~ )  = F(') n F ( ~ ) .  In domain 1, the 
displacements for individual atoms are: For La, d = {(0,0,2P),  (0,0,0,  ), (0,0,  O), (0,0,  -2P)) for atoms positioned at 
( t ,  +,.$), (% 4 ,  4 ) ,  (a, $, $ 1 ,  (i, 4,  $1, respectively. For Ag(In), d = { ( a ,  a ,  O ) ,  ( -a,  a, O), (a,  -a, O), (-a, -a, 0 ) )  
at posltlon to, 0 ,  O ) ,  (1,  0 ,  O ) ,  (0,  1, O ) ,  (0 ,  0,  I ) ,  respectively. Corresponding displacements in domain 4 are: For La, 
d = {(0 ,0 ,  O ) ,  (0 ,0 ,2a) ,  (0,0, -2a), (0 ,0 ,0) )  and for Ag(In), d = { ( -a ,  a ,  0 ) ,  ( a ,  a ,  0 ) ,  (-a, -a, 0 ) ,  ( a ,  -a, 0 ) ) .  The 
domain wall is in the y-z plane. 

By assuming 4Ai  + 4Ai + 4Ak = 0 ,  we find the following solution: 

In addition we find that e2, e3 are constant, ulz = ~ 2 3  = a13 = ull = 0. The compressive stresses in the y and z 
direction are not equal. The domain wall energy is: 

A comparison of the energies ElSlo and 2E1,4 shows that the positivity of the material dependent parameter a1 - a2 
determines the stability relationship of domains. When a1 > a2, the domain pair {1,10) will split into two domains: 
{1,10) + {1 ,4)  + {4,10),  otherwise {1,10) +- {1 ,4)  + {4,10). 

In the above solution we assumed qc to be constant while ql varied as a hyperbolic function. An alternative path 
between domains 1 and 4 is given by qi2 = qkz. Then, for z > 0 the solution is: 

and for 2 < 0 we get qi = -q&. The only requirement for this solution is that the material dependent parameter 
k i / k f  = 2D3/(2D4 + Dl) .  Which specific path will exist in a real crystal depends on the energies of various paths. 
We note that the criteria derived here for APB path vs. domain stability is an important feature of our analysis. We 
also considered an arbitrarily oriented domain wall between domains 1 and 4. We find that the strain remains the 
same as before the rotation, i.e. the x-y plane is homogeneous. The stable domain wall orientation is determined by 
aEApe/aO = 0 which leads to sin 20 f (0) = 0 and has solutions for 0 distinct from the solution of sin 20 = 0. 

111. The  {2,3) twin boundary is formed between D2(qt) = (0,0,0,  &a, d a ,  0 )  and D3(y') = 
(0,  d a ,  I/%, 0 ,  0,O). The domains 2 and 3 are related by a three-fold rotation along the (111) direction. In contrast 
to the antiphase pairs, twin domains are distinguished by their ferroic properties. Specifically, unlike APB pairs the 
two twin domains have diffeerent strains that can be detected optically. In domain 2, the displacement of the cubic 
center atom (La) is d = {(0,2a,  O ) ,  (0,0,  O ) ,  (0,0,  O ) ,  (0,  -2a, 0 ) )  and in domain 3 the corresponding displacement is 
d = {(2a,  0,  O ) ,  (0,0,  O ) ,  (0,0,  O ) ,  ( - 2 ~ , 0 , 0 ) ) .  The twin boundary has the following form: 7' = (0,  q;, q;, 4, qk, 0 )  and 
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contains the x=y plane and the (110) direction. Since the shear strain is different in the two domains, the boundary 
conditions for shear strain are necessary. 

For the special case Q1 = 7; = 4, qi = rl;, = Q2 we get two coupled differential equations. For the material 
dependent parameter A t z  = 0 (in a 45" rotated coordinate system r, s) we get 

where [TB = D- lk;. The domain wall energy is: 4- 

where k;, D-, A; and A t 2  are material dependent parameters. The strains e:, e$ are constant and a,, = 0. The 
shear strain parallel to the domain wall is a function of position, but the shear stress is zero. 

We can use the initial value scan shooting method to find solutions of two-variable coupled differential equations 
for the general problem of domain walls discussed above. The antiphase boundary {1,4) has similar equations to 
those of the twin boundary {2,3). The boundary conditions are also similar. Thus the general twin boundary case 
is covered by the antiphase pair {1,4). The {1,10) antiphase boundary case is considered separately. The stability 
conditions obtained above are borne out by the numerical solutions for linear vs. disjunct paths and also for the twin 
vs. disjunct paths. We show representative numerical solutions for the interphase boundaries in Fig. (2). 

IV. CONCLUSION 

We have employed powerful abstract group theoretical concepts to systematically describe antiphase and twin 
boundaries in a structural phase transformation, specifically in LaAgl-,In,. In particular, we decomposed the space 
group of the higher symmetry phase Go in terms of disjoint double cosets and utilized the concepts of equivalent 
domain pairs and the compatibility relations to find strains, stresses, width and energetics of the domain walls. We 
emphasize that group theoretical methods are systematic and have reduced our considerations to only three domain 
types represented by the domain pairs {1,4), {1,10) and {1,2) rather than the 132 possible pairs that might initially be 
considered. Stability conditions were also obtained. Moreover, we determined mechanical stability of these interphase 
boundaries, namely contraction or rotation in the region of the domain wall, and the application of external lateral 
forces to sustain the structure in the crystal. Our technique is readily applicable to twin boundaries in high T, 
superconductors [7], ferroelectrics, etc. The detailed study of the three domain pairs discussed above will be reported 
elsewhere [8]. 
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