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The Limits of Molecular Dynamics Applied to Condensed-Phase Energetic 
Materials 

E.S. Oran and J.P. Boris 

Laboratory for Computational Physics, Naval Research Laboratory, Washington, DC 20376, U.S.A. 

The limitations of various methods for computing manybody dynamics are summarized 
briefly in terms of the physical limits of the specific theory and generally of what can rea- 
sonably be computed. This information is then used to assess the current computational 
limit on using molecular dynamics to describe shocks and detonations in condensed phase 
energetic materials. This question is addressed by defining the computational require- 
ments of a molecular dynamics simulation of a detonation propagating in an idealized 
nitromethane crystal lattice. The major questions addressed are: What is required to 
compute the properties of the system to obtain reasonable mesoscopic data? and What is 
the size of the system we can now compute, using one of the largest computers available? 
From this analysis, we discuss several directions in which future research in this field may 
proceed. 

1. INTRODUCTION 

In a manybody-dynamics calculation, a large number of individual particles represent entities 
such as atoms, molecules, droplets, clusters, stars, or galaxies. These particles move according 
to prescribed equations of motion and interact according to specified force laws. In principle, the 
equations of motion can have any form. They could, for example, be classical, quantum mechanical, 
or relativistic. In the same sense, the interactions among the particles could be, for example, 
hard-sphere, two-body, manybody, gravitational, or electromagnetic. Once the particles and their 
interactions are defined, the system is allowed to evolve according to these laws. Applications of 
manybody dynamics have ranged from studies of phase transitions in liquids and solids, dynamics 
of large molecules, materials processing in dense systems, and galaxies forming from star clusters. 

Several aspects of molecular dynamics are important for making decisions about how and 
and under what conditions the method can be applied. Molecular dynamics is deterministic, in 
contrast to any form of Monte Carlo method, in which some elements of a statistical nature are 
introduced. Molecular dynamics is computer intensive. Computing the behavior of real physical 
systems, with realistic sizes and interaction, requires a great deal of computer time and memory. 
Molecular dynamics requires attention to selecting the best algorithms for tracking and evaluat- 
ing the interactions among large number of particles. Major decisions in setting up the physics 
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in molecular-dynamics simulations involve defining the nature of the interacting particles and 
their interactions, given the current knowledge of the interaction and the computational resources 
available. Usually tradeoffs between accuracy, computational efficiency, and realistic physical com- 
plexity must be made to obtain any reasonable results. 

The objective of this paper is to clarify the limits, both physical and computational, of using 
molecular dynamics to describe shocks and detonations in condensed phase energetic materials. 
This perspective should help determine which directions might profitably be followed in the near 
future. To help understand these limits, it is first necessary to evaluate the inherent limits of 
various approaches and therefore how molecular dynamics fits into the scheme of theories for solving 
manybody interactions. Since molecular dynamics relies on the availability of computational power, 
we consider what computers can now accomplish, and what they are likely to achieve in the near 
future. Finally, we use this information to evaluate what can be done in the study of ignition and 
propagation of shock and detonation waves in energetic materials. 

2. APPROACHES TO SOLVING MANYBODY INTERACTIONS 

Table 1 shows the heirarchy of mathematical models used to describe the behavior of systems 
involving many particles and interactions. Molecular dynamics is the most fundamental level of 
this heirarchy, and the interactions may be as basic as Newton's Law. Both Monte Car10 approaches 
and the Boltzmann equation are derived from the Liouville equation. At the level where particles 
can be considered a continuum fluid, the Navier-Stokes equations are generally used. 

Some of the information in Table 1 is recast into quantitative form in Figure 1, which shows 
the physical regimes of validity of the methods (modified from Bird [I]). The regimes of validity 
are expressed as a function of a characteristic distance in the system L, and the mean molecular 
spacing, 6. For a fixed molecular diameter, dl as the mean spacing between molecules decreases, 
the density increases. This is shown on the horizontal axis. The figure shows limits of the Navier- 
Stokes, DSMC, and molecular dynamics models, methods that can, in principle, be used to describe 
real physical systems. 

Table 1. Levels of Models of Manybody Interactions 

Equation Solution Method 

Newton's Laws Molecular Dynamics 
f = m a  

Liouville Equation Monte Carlo Methods 
F(x+, ,v~,~) ,  i = l , N ,  

Direct Simulation Monte Carlo 
Boltzmann Equation Direct Solution 

F(x ,  v, t) 
binary collisions (low density) 
good for gases 

Navier-Stokes Equation Direct Solution: Finite Differences, 
P(X, t) 7 4 x 7  t) Finite Volumes, Spectral Methods . . . 

short mean free path (small Kn) 



MD valid in all r gimes 
10' 4- l$Kn = 0.1 1 

Mean molecular spacing / Molecular diameter 

Figure 1. Regimes of validity of molecular dynamics, Direct Simulation Monte Carlo, and Navier 
Stokes, as a function of the characteristic length scale and mean molecular spacing of a system. 

Figure 2. 
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The Navier-Stokes equations are generally applicable when the system behaves as a continuum 
fluid. This is the case when the Knudsen number, the ratio of the molecular mean free path to a 
characteristic system length, is small, 

The Navier-Stokes equations could be modified to describe flows at higher Knudsen numbers, but 
to do this it is necessary to reformulate the expressions for heat and mass diffusion. Efforts to 
do this have been successful in slightly extending the range of validity. Efforts to use continuum 
approximations for higher Kundsen number situations involve solving equation sets that are math- 
ematically of higher order than the Navier-Stokes equations. Examples of these include the Burnett 
equations and various moment methods, which are computationally more expensive, more difficult 
to implement, and less well calibrated than the Navier-Stokes equations. 

When the ratio of the mean molecular spacing, 6, to the molecular diameter, d, is large, so 
that 6/d >> I, the Direct Simulation Monte Carlo method can be used. It is reasonable to take 
6/d > 7 [I]. The DSMC method is statistically based, and generally applied to high-Knudsen- 
number flows. It has been used extensively for atmospheric reentry problems, where the gas is 
very dilute, and now it is being used for denser flows in microchannels. The method is based on 
the same basic approximations from which the Boltzmann equation is derived, but its regime of 
validity also extends to systems where three-body collisions can occur. Because of the different 
criteria for validity of Navier-Stokes and DSMC, there is a range in which both methods can be 
used. Both methods are valid in the triangular domain of Figure 1 where S/d > 7 but Kn < 0.1. 

Molecular dynamics is valid throughout the entire range of parameters. This is because it is 
based on the most fundamental set of equations. There are no physical reasons why it cannot be 
used for all ranges of densities and system sizes. 

3. THE COMPUTATIONAL LIMITS 

The boundary lines between various methods shown in Figure 1 are based on very general physical 
principles, unrelated to either the limitations of input data or computational capability. Figure 2 is 
an attempt to further put limits on the applicability of a method by looking at the computational 
limits. 

Navier-Stokes methods are valid for low Knudsen numbers at high enough densities. When 
the Knudsen number is close to 0.1, correction terms are necessary. The DSMC methods can be 
used for high Knudsen number fluids, and again it is still possible to use them for the regimes of 
overlap with Navier-Stokes, where Kn < 0.1 and 6/d > 7, but here the computations become quite 
expensive. 

Molecular dynamics, however, becomes expensive for low density problems. For this method 
to be useful, we need to compute long enough for the system to evolve on the macroscopic time 
and space scales while using a specified microscopic particle interaction law. The computational 
timestep, however, is limited by the timescale of the interaction potential and the method of 
solution. If the particles are too far apart, it could take thousands or even millions of timesteps to 
simulate a few collisions. The expense becomes exorbitant. Thus molecular dynamics can be too 
expensive for dilute systems. This prohibition also extends to very large systems and systems that 
evolve slowly. 

The regime of parameter space in which L/6 < 100 is one in which there are few particles per 
volume element, and therefore few collisions. When this is the case, there are large fluctuations in 
the calculations of the mean properties of the system, such as density, pressure, and temperature. 
A DSMC calculation would require many ensembles to get good statistics. A molecular dynamics 
calculation would produce large spatial fluctuations in mean quantities. A Navier-Stokes compu- 
tation would not necessarily show these physically realistic fluctuations, which would have to be 



added by other theories. One extreme is the free-molecule limit, where a collisionless Boltzmann 
equation applies. 

4. MOLECULAR DYNAMICS AND THE STUDY OF ENERGETIC MATERIALS 

Substantial efforts have gone into using molecular dynamics to study the behavior of shocks and 
detonations in condensed phase energetic materials. The pioneering work of Karo and Walker [2], 
Odiot et al. [3-51, and Tsai and Trevino [6] inspired the later work by authors such as Lambrakos 
et al. [7], White and Brennan [a], and Phillips et al. [9]. All of these molecular dynamics computa- 
tions used model systems that attempted to incorporate some of the important characteristics of 
condensed phase energetic materials. In some cases, the systems were treated as two dimensional. 
Simplified force laws are used, and complex energetic molecules are generally approximated by 
combining a number of atoms into a smaller number of macroparticles. 

These idealized and scaled studies have produced a number of interesting results. The simula- 
tions showed that an ordered lattice structure, as in a solid, or a group of more-randomly-oriented 
dense particles, as in a liquid, can sustain a wave that behaves like a shock wave. Further, if 
there is energy added close behind the shock wave, the result is a propagating wave structure that 
looks like a detonation. As in the continuum representation of a detonation, the energy addition 
contributes to the molecular motion and drives the shock even faster. These results answered some 
of the first questions about molecular dynamics that were asked by the detonation-physics commu- 
nity: Could a system of particles, interacting in prescribed ways, mimic the understood behavior 
of a detonation? Once this was shown, it was then possible to ask questions such as how does a 
supersonic wave pass through a lattice, and what does it do to the lattice as it propagates? Is there 
a minimum ignition energy required to initiate a detonation? How can you ignite a detonation? 
What are the differences between a detonation propagating in a lattice and in a liquid? What are 
the differences between onedimensional, two-dimensional, and three-dimensional representations 
of a system? What are the effects of vacancies and mass defects? All of these and other questions 
have been addressed. Taken together, the simulations performed to answer these questions have 
given a basic understanding of how a lattice reacts as it is perturbed by highly nonlinear forces 
and interactions. 

5. THE LIMITS OF THESE STUDIES 

In the computations discussed above, the system parameters had to be scaled to carry out the 
simulations. With the resources available, we could not consider simulating detonation ignition or 
propagation in systems with realistic values of the system size, L, and rates of energy release. To 
decrease the size of the system and have a viable simulation, the rates at which chemical reactions 
occur and energy is released must be increased. These types of scaled, approximate models have 
been used for decades in plasma simulations where much work has been done for proton to electron 
mass ratios much smaller than the correct value of 1836. This scaling is done with the hope that 
the same types of effects that occur in actual systems can be studied on a smaller, faster scale. 
Experimental studies have shown that the sizes and times of the actual effects simulated are orders 
of magnitude larger than the ones simulated. In such small systems, we can see some of the basic 
features of wave propagation, but we cannot simultaneously resolve the macroscale processes that 
we know are important. For example, we can only barely begin to see the effects of coherent waves 
structures and grain interactions. The question we ask is whether molecular dynamics can be 
used to compute the kinds of properties of energetic materials that can be compared directly to 
experimental results? Will we always be confined to "model" systems and scaled parameters? 

Consider the more specific question: How much computational power is needed to model a 
microscopic system with enough particles to constitute a sample large enough to see macroscopic 
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effects? For example, with the largest new computers, we can consider simulating the behavior of 
a billion individual particles and simultaneously computing their interactions at  rates of tens of 
gigaflops. (One gigaflop is a billion floating point operations per second.) Would a billion particles 
be enough? 

To help address this question, we focus on a specific type of computation that has been 
optimized on the largest computers: a model system of a nitromethane crystal. The system could 
also be a liquid, and the same estimates would hold.) We also consider a detonation propagation 
problem. An ignition problem would require simulating a much larger systems for longer physical 
times. We assume that the bulk of the energy is released from a shocked element of nitromethane 
in 5 pm, an estimate that is perhaps too small by a factor of five. An earlier Navier-Stokes 
computations, describing detonation cells in liquid nitromethane, showed that the detonation cell 
height is 50 pm, and so the detonation cell length is less than 100 pm. 

Therefore, a minimum macroscopic scale (a mesoscale), is at  least a couple of detonation cell 
lengths long, and at least one cell high. The detonation would have to travel further than this in 
the calculation, but this can be achieved numerically by adding unreacted material ahead of the 
detonation, and subtracting it from the back. To look at macroscopic phenomena, however, at least 
one or two cell lengths should be retained in the computer at any on time. Thus our assumption 
here is that we need to simulate a system that is 100 pm x 50 pm in two dimensions, and 100 pm 
x 50 pm x 50 pm in three dimensions. We also assume that the detonation travels at about 
5000 m/s. Therefore, for the detonation to propagate 100 pm requires that we simulate 2 x lo-' s 
of physical time. For a typical computational time step of 10-l3 s (perhaps too long for realistic 
simulations), we need to be able to compute 2 x lo5 time steps for the detonation to propagate 
approximately one detonation cell length. A usual computation would require computing for a 
number of cell lengths, say four or five, or about lo6 timesteps. 

Let us consider the simplest model, the C-N model, in which the C represents CH3, and the N 
represents NO2 [4,7]. The initial shock can create conditions in which the system is electronically 
excited, and the C-N bond can break. After it has broken, other reactions take place which 
eventually lead to the formation of final products and energy release. This second process is 
modeled by a time delay to energy release after the C-N breakup. This extremely simple model 
contains the essence of what is needed to generate a reaction wave in a system. If the energy 
release occurs close enough behind the leading shock, it can couple to it dynamically and evolve 
into a detonation. If the energy release it too slow, a slower deflagration or flame may arise. 

Molecular dynamics studies have shown that each pair of C-N's are separated by about 5 A. 
In two-dimensional studies, the C-N's can form a minimum-energy lattice by aligning with all of 
the C-N's point in the same direction. In threedimensions, there are two minimum energy states. 
In the lowest, the unit cell is 10 A, and the C-N's are aligned in opposite directions every 5 A. In 
the metastable state, the unit cell is about approximately 5 A, and the C-N's are aligned. We also 
assume that the relatively simple form of a potential, such as the predissociative potentials [4], are 
used in the hypothetical calculation. 

Recent computations have shown that there are substantial differences between the results of 
two- and three-dimensional computations [9]. The additional degrees of freedom in three dimen- 
sions means that the system can equilibrate more quickly than it would in two dimensions, and so 
the time scales change. Therefore, anomalous effects occur in simulations in two dimensions, and 
these effects disappear in three dimensions. For example, in two dimensions, there is a sharp tran- 
sition from an initial detonation state that depends on initial input energy to one that correspond 
to the Chapman-Jouguet state. Computations in three dimensions go smoothly to this final state. 
Our conclusion is that to obtain quantitatively valid simulations involving flows of material in 
transition, it is necessary to perform three-dimensional calculations. For these particular systems, 
simulating threedimensional situations using molecular dynamics may be more important than it 



is using a fluid dynamics approach. In fluid dynamics, the equations of state already includes the 
microscopic effects of three dimensions, even in tw+dimensional simulations. 

Combining this information about the model lattice and what constitutes a minimum system 
size to obtain a meaningful mesoscopic simulation, allows us to compute the number for particles 
that must be included in such a simulation. The result is that a two-dimensional simulation needs 
at least 4 x 1011 particles, and a three-dimensional simulation should have at least 8 x 1016 particles. 
This is considerably larger than the billion particles that we can now contemplate simulating and 
the 600 million particles treated in some simulations to date. These estimates are summarized in 
Table 2. 

For a two-dimensional molecular dynamics simulation using the model given in Table 2, we 
need approximately 10 arrays. For a three-dimensional calculation, we need to store approximately 
12 arrays. These numbers are not exact, because it is often possible to trade off memory storage 
for computer time. Some variables, that for convenience could be stored in computer memory, 
can be recomputed from other stored variables. Also, depending on whether the computation is 
done in single or double precision, approximately 40-80 bytes of storage per particle is required 
in two dimensions and 50-100 byteslparticle in three dimensions. The result is that 8 terabytes 
of memory are needed for a two-dimensional calculation, and 4 million terabytes for a three- 
dimensional computation. 

At this point there is a natural question to ask: What we can simulate now? First, consider 
what is actually available in terms of computer resources. These estimates are for the CM-5E 
at NRL, a massively parallel supercomputer on which most of our molecular dynamics codes are 
optimized. The CM has 32 Gbytes of memory. Therefore, we definitely do not have the computa- 
tional memory available to carry out even the 4 x 10'' particle simulation. The CM can reach a 
theoretical speed of 40 Gflops, and practical programs can achieve about 8 Gflops. This is painfully 
inadequate. The computation of one time step requires about 500 operations/particle/timestep in 
two dimensions, and 1000 operations/particle/timestep in three dimensions. Therefore, at a speed 
of 8 Gflops, one time step of a two-dimensional calculation would take 7 hours to  compute, and one 
timestep of a three-dimensional calculation would take 300 years! We are hardly able to compute 
for one time step, let alone the lo5 or 106 timesteps it would take for the detonation to propagate 
a cell length. 

Table 2. Summary of Physical Model and Computational Requirements 

Physical Model Modified C-N predissociative model for crystal nitromethane. 
Intramolecular spacing 5 A. 
Detonation speed 5000 m/s. 

Minimum Macroscopic Scale 
2D 100 x 50 pm2 
3D 100 x 50 x 50 pm3 

Number of Simulated Particles 
2D 4 x 10'' 
3D 8 x 1016 

Computational Storage Requirements: 
2D 40-80 bytes/particle Total 8 Tbytes 
3D 50-100 byteslparticle Total 4 x lo6 Tbytes 
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What is close to computable is a system that is 0.2 pm x 0.2 pm x 0.4 pm, which, for this 
physical model, would require 1.6 x lo7 particles, or perhaps 0.5 pm x 0.5 pm x 1.0 pm, which 
would require 2.5 x lo8 particles. This is about the limit that will fit into a full 32 Gbytes. This 
larger system would require integrating 2.0 x 10-lo s of physical time for a detonation cell length 
of 1 pm, which is about 1000 time steps. For 2.5 x 10' particles, and 1000 operations/timestep/ 
particle, a computation requires 2.5 x 1Ol1  operations/timestep. At 8 MFlops, this means that a 
timestep takes about 40 seconds. Computing the time it takes a detonation to travel 1 pm then 
requires 40,000 seconds, which is about 11 hours. The problem, then, is finding a realistic physical 
system with such small detonation cells. This, in turn, means very fast energy release. 

Table 3. Current Modeling Limitations 

Computer: 

Physical-System Size: 

Number of Particles: 
Computational Timestep: 
Computational Time: 

CMdE, 32 Gbytes, 8 Gflops 

0.5 x 0.5 x 1.0 pm3 
(Detonation cell length, 1.0 pm) 
2.5 x lo8 
40 s/timestep 
11 hours per detonation cell length 

6. CONCLUSIONS 

The conclusion from the arguments given above is that even using the classical, model interaction 
potentials, we cannot easily or directly use molecular dynamics methods to simulate a detonation in 
nitromethane on current computers for realistic macroscopic sizes and times. Even with a teraflop 
computer and 100 Gbytes of memory, we could obtain at most a factor of 25 in speed, and a 
factor of three in particle number over what is now possible. Current rates of improvement in 
computers indicate that there is about a factor of two increase in speed every two years. Assuming 
that accessable memory is not a problem, in 10 to 15 years we could perform the computation in a 
reasonable amount of computer time. We have not yet begun to address the problem of how to deal 
with the memory and corresponding bandwith problems. These might be answered in 25-30 years. 
This general conclusion lead to three observations about the applicability of molecular dynamics 
to  energetic materials research. 

First, we can continue to do as we have: model scaled systems that represent faster conversion 
of reactants to products and faster energy release than is correct for actual physical systems. This 
allows us to examine the qualitative features of interactions potentials, energy transfer, crystal 
structure, and wave initiation and propagation. This generic approach has been successful for other 
methods in the past. For example, in the 1960's when the DSMC method was first developed, there 
were no computers large enough to compute the behavior with realistic scales of physical input 
data. Today, thirty years later, actual computations are possible and these are regularly compared 
to experiments. DSMC has entered a stage where it is a practical, useful computational tool for 
both basic and applied research. This might be the case in 30 years for molecular dynamics of 
energetic materials. 

Second, we could try to find some systems for which direct simulation is possible and mean- 
ingful, for which experiments can be done. This would mean working with an explosive with a very 
fast energy release. Experiments on such a system may not be possible, and if they were, would 
be very unsafe because the material would be dangerously unstable. The very factors that would 
make the physical system computable today make it dangerous. 



There is a final conclusion that has to be considered very seriously. That is to consider 
mesoscopic scale particle dynamics in which a particle now represents a cluster of say, C-N's, 
in a particular configuration. Particles could, for example, represent pieces of crystals that are 
on the scale of microns. Then we would not be attempting to represent the microscopic scale 
deterministically from first principles, as we are doing now with molecular dynamics. Instead, 
we would be attempting to describe a mesoscopic structure. This is a more phenomenological 
approach that could bridge the current gap between microscopic information and macroscopic 
behavior. A current argument in favor of this approach is that we do not even properly represent 
the microscopic behavior in our molecular dynamics computations now. The potentials are not 
quite correct: we are not quite correctly representing a crystal lattice, and we do not include the 
full chemical reactions. In some ways, our input data is as crude as the crudest Navier-Stokes 
computation of a detonation. 

In summary, we believe that application of molecular dynamics to simulate the behavior 
of energetic crystals is truly a grand challenge in computing. We do not believe that we can 
perform viable direct simulations of such systems, given current computers, for the next 25-30 years. 
Many of the Grand Challenge problems that have driven the development of modern computing 
capabilities were in the same situation 20 years ago, and it is that international challenge that has 
brought us where we are today. 
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