Excited state absorption in KCl: Eu2+
D. Schinca, J. Tocho, E. Rodríguez, F. Cussó

To cite this version:
D. Schinca, J. Tocho, E. Rodríguez, F. Cussó. Excited state absorption in KCl: Eu2+. Journal de Physique IV Colloque, 1994, 04 (C7), pp.C7-409-C7-412. <10.1051/jp4:1994796>. <jpa-00253327>

HAL Id: jpa-00253327
https://hal.archives-ouvertes.fr/jpa-00253327
Submitted on 1 Jan 1994

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Excited state absorption in KCl:Eu$^{2+}$

D. Schinca, J.O. Tocho, E. Rodriguez* and F. Cussó*

Centro de Investigaciones Opticas (CIOp), C.C. 124, 1900 La Plata, Argentina
* Dept. Fisica de Materiales, Universidad Autónoma de Madrid, Spain

ABSTRACT: Non-linear behavior with respect to exciting fluence of both photoacoustic and luminescent signals in KCl:Eu(2+) , excited by laser pulses at 355 nm, were analyzed in terms of excited state absorption (ESA). Measured ESA cross-sections for 355 and 420 nm were found to be 1×10^{-17} cm2 and 2.5×10^{-18} cm2 respectively.

1. INTRODUCTION

There is great interest to search for materials to develop tunable solid-state lasers emitting at shorter wavelengths than the present ones. Divalent europium ions in a strong crystalline field has potential for laser operation in the violet and blue spectral regions$^{[1]}$. However, in some crystalline hosts, (like CaF$_2$), it was found that strong excited state absorption prevented laser action$^{[2]}$. Alkali halides can be more appropriate hosts for laser action due to their small Madelung energy at the europium site. In view of this interest, excited state absorption (ESA) measurements have been performed at room temperature in KCl:Eu$^{2+}$ using photoacoustic and luminescence methods.

As it is well known$^{[3]}$, the absorption spectrum of Eu ions in KCl crystals consists in two broad absorption bands attributed to transitions from the $^8S_{7/2}$ ground state of the $4f^7$ configuration, to the $4f^65d$ configuration. In cubic symmetry, the crystal field splits the d electron into two e_g and t_{2g} components, which correspond to the observed absorption bands. For sixfold coordination, which is the case for Eu$^{2+}$ ions entering substitutionally for K$^+$ ions in KCl, the t_{2g} is the low-lying level (fig 1). After excitation of these two bands, a single luminescent band is observed, corresponding to the $t_{2g} \rightarrow 4f^7$ transition. Vibronic relaxation provides strong photoacoustic signals for both excitations.

(*) Member of Com. Invest. Cient. Pcia Buenos Aires (CICBA), Argentina
2. EXPERIMENTAL SETUP AND RESULTS

The experimental setup used in this work (fig 2) is similar to that described for the determination of the luminescence quantum yield of this material\(^4\). Excitation at 355 nm was provided by the third harmonic of a Nd:YAG pulsed laser. The sample, in the form of a rectangular slab of 10 by 5 by 1 mm, with absorbance less than 0.1, was fixed to a PZT detector. Luminescence was collected by an optical fiber and analyzed by a monochromator-photomultiplier system. Both signals were amplified and digitized. Laser pulse energy was measured by using a calibrated pyroelectric detector. The first peak of the photoacoustic signal (PAS) and the maximum of the luminescence signal (LUM) were plotted in terms of incident laser fluence, which could be varied by using a half-wave plate polarizer combination. It is clearly seen in fig.3 that both signals depart from linearity. While LUM tends to saturate, PAS has an opposite behavior.

3. DISCUSSION

By the use of the diagram in fig. 1 we can calculate the amount of prompt heat released after the absorption of the excitation laser pulse with fluence \(F\). The PAS signal can be written as:

\[
PAS = k_p [(\sigma_\text{e} q_\text{e} F) + (\sigma_\text{e} q_\text{o} F) + (\sigma_{\text{e}(355)} q_\text{z} F^2)],
\]

where \(\sigma\) represents the fluorescence quantum yield of the \(t_{2g} \rightarrow 4f\)
transition, σ_0 and σ_e are the ground and excited state absorption cross sections at 355 nm and q_i values can be calculated from absorption and luminescence spectra. k_p is a constant that relates the heat to the amplitude of the PAS signal and it was calculated to match the experimental results at low fluence (linear region). The third term arises from ESA. Relaxation after this process is assumed to be 100% non-radiative. Each contribution is represented in fig. 4. Best fit of all points by using eq.(1) was obtained for $\sigma_e(355\text{ nm}) = 1 \times 10^{-17} \text{ cm}^2$. Luminescence results could not be fitted using this simple model. LUM saturates more strongly than the predictions given by depletion of the ground state due to excited state population.

We concluded that luminescence is reabsorbed within the excited zone. If $\sigma_e(\text{LUM})$ represents the ESA cross section for the luminescence wavelength and L, the length of the excited zone in the direction of observation, LUM can be written as:

$$LUM = (1 / L, \sigma_e(\text{LUM})). [1 - \exp(-N_1 L, \sigma_e(\text{LUM}))],$$

(2)

with:

$$N_1 = N_0 \sigma_0 \cdot [\exp(- \sigma \cdot F) - \exp(-\alpha \cdot \sigma_{355}(355) \cdot F)] / (\alpha \cdot \sigma_{355}(355) - \sigma_0),$$

where α represents the fraction of ions going from the higher excited state to metastable states. In reference [4], $\alpha = 0.67$ was calculated. Using eq. 2, the best fit of experimental results of LUM was obtained for $\sigma_e(\text{LUM}) = 2.5 \times 10^{-18} \text{ cm}^2$ (fig.5).
4. CONCLUSIONS

Non linear behaviour of photoacoustic signals in KCl:Eu$^{2+}$ can be explained in terms of ground state depletion due to excited state absorption at the pump wavelength. The calculated value for $\lambda = 355$ nm is in agreement with previously published results 15. Excited state reabsorption of luminescence must be included in order to explain the strong saturation of luminescence with pump fluence. The obtained value for $\sigma_e(420 \text{ nm})$ seems to be enough to prevent laser action in KCl:Eu$^{2+}$. This result is in disagreement with calculations made in ref.16. No laser action in this material has been reported yet.

5. ACKNOWLEDGMENTS

This work was partially financed by CONICET, Argentina and Agencia de Cooperación Internacional, España.

REFERENCES