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Modeling the acoustic attenuation process of soft tissues 
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Faculty of Engineering, Alexandria University, Alex., Egypt 
* Medical Research Institute, Alexandria University, Alex., Egypt 

A mathematical model is developed to simulate attenuation of sop tissues. A comparison is 
done between the results of linear model (zero phase and minimum phase) and the nonlinear 
model. the nonlinear minimum phase model is verified to be the best model for simcrlating the 
attenuation of ul~rasound in soft tissues, as compared to the zero phase and the mininlum 
phase linear models. 

INTRODUCTION 

One approach to ultrasonic characterization of tissue utilizes 
quantitative measurements of attenuation and backscatter coefficient of 
normal or diseased tissues. Attenuation measurements have been studied by 
a number of groups [I-71. One group begins with an assumption that 
attenuation ( a )  increases linearly with frequency (f). 

where the single-parameter 0 is used as a measure of attenuation. This 
model is limited in its ability to represent tissue attenuation [8,9], 
and therefore leads to systematic, frequency-dependent errors [lo]. 
Specifically, the power spectrum of the pulse experiences a downshift in 
its center frequency which is related to attenuation [ll]. 

In describing an acoustic propagation medium as a linear system, 
usually only the magnitude of the frequency transfer function is 
specified. The phase component of the transfer function is often left 
unspecified because of the difficulty in its measurement, or because 
direct interpretation of the phase characteristics is not as intuitive as 
the interpretation of the magnitude function. The phase component has 
enjoyed increased importance with the recent popularity of time domain 
signal processing techniques, such as inverse filtering [12], predictive 
deconvolution [13], or maximum entropy spectral estimation [14], which 
make some assumptions about the phase properties of a system, usually 
assumed to be a minimum phase. For minimum-phase systems, the log- 
magnitude and phase characteristics are related through Hilbert Transform 
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[15]. By taking the discrete-time Hilbert Transform of the nonlinear with 
frequency log magnitude characteristic exhibited by some tissues, we can 
determine the phase spectrum. The attenuation model presented here is an 
extension to the work performed by Kuc (161. The minimum-phase model 
having a nonlinear characteristic was determined by applying the same 
procedures described by Kuc [16]. 

A. Magnitude transfer function 
Let us consider a section through which the pulse propagates. Let 

the attenuation coefficient of the tissue, denoted by a(T,f), be a 
nonlinear function of frequency of the form : 

a(T,f) = ao(T) f" for f>O ( 2 )  

where T is the temperature in "C, f is the frequency in MHz, a is the 
attenuation in dB/cm, and a. and n are the magnitude and frequency 
parameters of the tissue. 

The log-magnitude transfer function of a d cm thick piece of tissue, 
denoted by L(f), is then equal to : 

The resulting magnitude function, denoted by I~(f)l, is then equal 
to : 

For the discrete-time (sampled-data) domain, the magnitude 
characteristic has the above form for O<f<1/2TS, where T, is the sampling 
period. The magnitude characteristic is also an even function of f and is 
periodic in f, with a period l/T,. 

B. Discrete-Time Hilbert Transform 
For a minimum-phase filter, it is well known that the log magnitude 

and phase functions form a Hilbert Transform [15]. For the discrete-time 
domain, the Hilbert Transform of the log-magnitude has the form : 

where o = ZxfT, and the symbol P' denotes the Cauchy principal value of 
the integral [15]. If the Cauchy function is zero, the value of the 
function becomes infinite and the integral must be evaluated through a 
limiting procedure. 

EXPERIMENTAL VERlFlCATlON AND RESULTS 

To verify the minimum-phase model, a pulse-reflection experiment was 
performed on bovine liver, human breast, and cancer breast tissues 
submerged in water. The transducer is immersed in a rectangular 
temperature controlled water tank. The transducer is utilized as both a 
pulse transmitter and receiver. Stainless steel reflector is located in 
the focal region of the transducer and aligned for normal wave incidence. 
The sample is interposed between the transducer and the reflector. The 
pulses reflected £rom the stainless steel reflector without sample, p,, 
and those reflected with the tissue sample interposed between the 
transducer and reflector, p,, are measured. 

To determine the log magnitude transfer function of the soft tissue 
sample, the stainless steel reflection power spectrum (without sample), 



Sp(f), and that with the sample interposed between the transducer and the 
stainless steel reflector, S,(f), are calculated as the squared magnitude 
of the Fourier Transform of the respective pulse sequence. The frequency 
dependence of the attenuated signal can then determined by subtracting 
the soft tissue sample log spectrum from that of the stainless steel. 

Table 1 shows the values of nonlinear attenuation coefficient n and 
a. and the value of linear attenuation coefficient 5 for bovine liver, 
normal breast and cancer breast. Using these parameters, the log 
magnitude transfer function L(f) of a d cm thick piece of tissue is then 
calculated from equation ( 3 ) ,  and the resulting magnitude function 1 H(f) 1 
is obtained from equation (4). The minimum-phase unit-sample response of 
the digital filter models for the bovine liver, normal female breast, and 
cancer breast tissues are calculated from the log-magnitude transfer 
function having the same attenuation magnitude parameter a. and frequency 
parameter n of the respective tissue, and from the phase determined by 
Discrete Hilbert Transform (DHT). 

Table 1 : Attenuation coefficients (n, a. and 0) and normalized RMS. error 
for minimum phase predictions. 

DOTTED.OBSERVEO DOllED~OBSEFlVEO 
SOLID -NON LINEAR MIN. PHASE SOLID :LINFAR MIN PHASE 

TlMF (US) 

S M L E  

Bovine l i v e r  

h b m l  breast 

Cancer breas t 

00TTED.OBSERVEb 
SOLID :LINEAR ZERO PHASE 

G-- ;A;--- ~-2m---720 
TIME (us) 

Figure ( 1 )  : Cornparison of predicted & reflections 
a) Bovine liver-non linear min. phase. 
b) Bovine liver-linear min. phase. 
c) Bovine liver-linear zero phase. 
d) Bovine liver-non linear zero phase. 

a. 
(db/m.iWkn) 

O. 6760 

1.3740 

3.2187 

n 

1.3206 

1.0486 

0 .  7786 

B 
(dB/an.M-lz) 

O. 8440 

1.4211 

2.  7608 

m. error 
nonlinear 

min.  phase 

16. Y ?  

17. Y ?  

17. Y ?  

m. error 
l i nearmin .  

pha s e 

54. Y?? 

19. 1% 

63. 
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COMPARISON BETWEEN DIFFERENT MODELS 

To verify the accuracy of the model, the stainless steel surface 
reflection pr is convoluted with the unit sample response to predict the 
form of the stainless steel reflection with sample, ps, for linear and non 
linear minimum phase models. The model is accurate when the predicted and 
observed wave forms are identical. 

The results shown in Figure la, indicate that the nonlinear minimum 
phase is almost exact, and presents a better model than the linear 
minimum phase, Figure lb. 

Table 1 shows the normalized rms. error for the nonlinear and linear 
minimum phase predictions. It is noted that the rms. error for normal 
breast is almost the same for linear and nonlinear models, since the non 
linearity presented by n is close to 1. 

For comparison, a digital filter model having a zero phase 
characteristic is implemented. Assuming a zero phase charact ristic is 
eguivalent to assuming that the real value ma nitude function, TH(f) 1 , is 
the entire complex value function H (f) , i. e H (f) 1 is taken as the real 
part, and the imaginary part is taken as zero. In this case, the unit- 
sample response of the filter with zero phase is simply the Inverse 
Fourier Transform of equation (4). The resulting zero-phase unit-sample 
response is non causal, having non-zero values for negative time. But, by 
adding a sufficient amount of negative linear phase, the finite-duration 
unit-sample response can be delayed and made causal [16]. 

Applying the same verification procedures as above to the linear and 
non linear zero-phase models produces the prediction of the reflected 
pulses for the liver as shown in Figures 1, (c & d). The mismatch in the 
assumed phase characteristic of the zero phase filter model results in a 
poor prediction. 

CONCLUSION 

The above shown results indicate the superiority of the non linear 
minimum phase digital model over the other models for modeling acoustic 
attenuation for soft tissues. 
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