Hydrothermal crystal growth of α-quartz: new specificities correlated to applications

G. Demazeau, F. Lafon

To cite this version:

HAL Id: jpa-00252470
https://hal.archives-ouvertes.fr/jpa-00252470

Submitted on 1 Jan 1994

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hydrothermal crystal growth of α-quartz: new specificities correlated to applications

G. DEMAZEAU and F. LAFON

Laboratoire de Chimie du Solide du CNRS et Interface Hautes Pressions, LCS-CNRS - ENSCPB, Université Bordeaux I, 33405 Talence cedex, France

Abstract: α-quartz is mainly used for high frequencies devices, due to its piezoelectric properties. The development of higher frequencies than before for many applications leads to new requirements concerning the material (lowest concentration of physico-chemical and structural defects) and consequently to its crystal-growth.

α-quartz, due to its piezoelectric properties has led to the development of either industrial devices and consumer equipments [1] (Table).

| Industrial equipment | Radiocommunication, cable communication, electronic applications, measurement equipment, pager, security system (alarm)... |
| Consumer equipment | Electronic handy calculator, watch clock, timer, cable TV, color TV, video recorder, RF converter, tranceiver, radio equipment, microphone, electronic appliance, microphone, electronic appliance, microcomputer and computer terminal, TV-game machine, telephone, copy machine... |

Main Piezoelectric Applications of α-quartz Crystal (from Taki)

The $\alpha \rightarrow \beta$ transition taking place close to 573°C, the synthesis of α-quartz single crystals requires a low-temperature crystal-growth process. This condition has led to the development of the hydrothermal process (Fig.).
The use of pressure increase the solubility of the nutrient in the temperature domain selected for the crystal-growth ($T = 400^\circ C$). The solvents, conventionally used, are a molar solution of NaOH or Na$_2$CO$_3$. A gradient of temperature ΔT between the nutrient and the seeds allows the transportation of SiO$_2$ as complex anions or polyanions.

Direct measurements on hydrothermal solutions in the crystal-growth conditions of α-SiO$_2$ are needed to establish exactly the nature of such anionic species [2]. The cultured α-quartz single crystals are characterized by chemical and physical defects [1,2].

1. ANALYSIS OF THE DEFECTS OBSERVED IN SYNTHETIC α-SiO$_2$ SINGLE CRYSTALS

Roughly such defects can be classified into two groups:
- the physico-chemical defects,
- the structural defects.

1.1. The physico-chemical defects

They are mainly induced by the nature of the nutrient of the solvent and also the chemical contamination of the solution by the metal constituting the reaction vessel.
The inclusions
They are constituted by a solid or a liquid phase inserted in the α-SiO$_2$ lattice. Concerning the solid phase, the most common inclusion is the complex silicate NaFe(III)Si$_2$O$_6$ (acmite). Its formation results from the chemical attack of the reaction vessel (walls iron-alloys) by the alcaline solution (NaOH or Na$_2$CO$_3$) used as solvent.

The etch-channels
Such defects are also called etch pipes or tunnels [4-6]. The etch rate along this channel is very much higher than that characterizing the bulk-material. The formation of these defects are correlated to that of dislocations.

Chemical substitutions into the α-quartz lattice
These substitutions are induced by the similarity of cationic or anionic sizes between Si$^{4+}$, O$^{2-}$, Al$^{3+}$ (or other trivalent cation able to accept the tetrahedral coordination) and OH$^-$.

\[
\begin{align*}
O^{2-} & \rightarrow OH^- \\
Si^{4+} & \rightarrow Al^{3+}
\end{align*}
\]

The formation of such a defect is in particular help by the basicity of the solvent (OH$^-$ concentration).

Interstitial cations
In some thermodynamical conditions different cations (in particular Li$^+$) can be in interstitial positions, in particular for compensating the Si$^{4+} \rightarrow M^{3+}$ cationic substitution into the SiO$_2$-α lattice.

1.2. The structural defects
The main nature of these defects are dislocations. Their origin can be generally due to foreign particles, thermodynamical parameters governing the crystal growth or hydrodynamic conditions inside the reaction vessel.

2/ QUALIFICATIONS REQUIRED FOR APPLICATIONS
In a piezoelectric resonator, electrical energy and mechanical energy are interconverted [1]. In such a schema, a resonator can be equivalent to a circuit consisting of an induction, a resistance and two capacitances.
Q is defined as: $Q = \frac{|x|}{R}$.

- x is the inductive or capacitive reactance at resonance,
- R is the resistance.

Q can be considered as the inverse of the fraction of the energy lost per cycle. The highest values of Q are required in order to prevent lost of energy into incoherent phonons.

The acoustic Q for natural α-SiO$_2$ crystal are close to 1 to 3.106 while for synthetic crystals such a value drop down to 2.105-1.106. The analysis of such a phenomenon has led to correlate such a Q value to infrared adsorption at 2.86 μm corresponding to an OH stretch frequency [6-8]. This adsorption could be induced both by the presence of H$_2$O (as inclusion for example) or the anionic substitution $O^{2-} \rightarrow OH^-$ into the lattice, this substitution being compensated by a cationic one $Si^{4+} \rightarrow Al^{3+}$ or $Si^{4+} \rightarrow Fe^{3+}$.

During these last twenty years, the main requirement for growing α-SiO$_2$ single crystal was to improve Q, and to get a low concentration of physico-chemical and structural defects.

3/ NEW CONSTRAINTS FOR DEVELOPING HIGH FREQUENCY DEVICES

The development of high frequency devices (24 MHz \rightarrow 100 MHz and more), induces strong constraints concerning the shaping of the α-SiO$_2$ material.

If for 24 MHz the thickness of the sheet is close to 70 μm, in the domain of 100 MHz such a thickness can drop down to 6-7 μm. This requirement is important for the crystal-growth of α-quartz, the size of the defects being of the same order. Consequently for the solid state chemist, the elaboration of single-crystals with a very low concentration of defects appears to be a new goal.

3.1. Role of the defects on the applications

The existence of defects in synthetic quartz crystals leads to critical modifications of resulting devices [9].

- The inclusions can be assimilated to a zone of discontinuity, the acoustic wave is propagated in another solid.
- The OH concentration induce to a large decrease of the acoustic coefficient Q. The substitution $O^{2-} \rightarrow OH^-$ being coupled with the cationic one ($Si^{4+} \rightarrow M^{3+}$), the M^{3+} impurities can play an important rôle concerning the ageing process of the device and its behaviour versus ionizing radiations.
The dislocations inducing local stresses, a modification of the local electric field compared to the applied one can be observed.

3.2. New developments in \(\alpha \)-SiO\(_2\) crystal-growth

Considering the analysis of the main defects generally observed in \(\alpha \)-quartz lattice, different parameters can be defined for obtaining a significative improvement of the single crystal quality:

a) the purity of the solvent,
b) the development of new solvents able to reduce the anionic and cationic substitutions \([10,11]\),
c) the increase of pressure domain \([12]\),
d) the strict control of the thermodynamical parameters \(P,T,\Delta T\) governing the process,
e) a reductions of the \(\Delta T\) value,
f) an optimization of all parameters governing the thermodynamical parameters and the structure of the reaction vessel \([13]\).

CONCLUSION

The development of new devices results in the major case of the overlap of competences between solid state chemistry, physics and ingeniering. \(\alpha \)-quartz is a old piezoelectric material if we consider the first experiments devoted to the crystal-growth of synthetic quartz \([14]\). The futur developments of new-devices based on high frequencies require to reach the intrinsic properties of such a material. Consequently, the improvement of single-crystals quality appears a goal in Materials Science \([15]\).

References

15) R.A. Laudise and J.W. Nielsen, Solid State Physics, 12, 149, 1961