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Italy 

Abstract: The phase stability of charged hard sphere fluid 
mixtures modelling colloidal solutions is studied through 
the Mean Spherical Approximat ion (MSA) . The isothermal 
compressibility and the Gibbs free energy of mixing are 
calculated, and from them, the liquid-vapor and the 
liquid-liquid decomposition spinodal line are determined, 
respectively. 

The MSA results favorably compare with those available 
from other theories as far as the liquid-vapor instabiity 
is concerned. For liquid-liquid decomposition the theory 
allows one to construct the full temperature - 
concentration spinodal which shows an upper consolution 
point in temperature. Discussion and interpretat ion of 
this and related features of the phase stability line are 
reported. 

Several simplified modelizations of charged colloidal systems 
have been proposed in recent years in order to obtain a 
theoretical description of the structural properties of these 
system.. One of these approaches, probably the first in order 
of time, is based on the reduction of these multicomponent 
fluids to a 'one component' system in which the colloidal 
macropart icl es are assumed to interact via an effective 
pot,en+,ial which takes into accoilnt,, in an averaged form, the 
presence of the counter-ions, of the solvent, and possibly of 
other ionic species. Once the model potential is so fixed one 
resorts to the application of some liquid structural theory1 
which a1 lows one to calculate thermodynamic and structural 
properties of the colloidal solution; these last are eventually 
compared with experimental data or with computer simulation 
results , if available. 

It is implicit in the one component I-epr.esenl,ation that 
correlations between macroparticles and the other ionic species 
are so small that the presence of these last can be taken into 
account in terms of a 'mean field' interaction. 

This approach is qualitatively accurate for the description 
of the structural properties of a number of real colloidal 
systems1-*; its main deficiencies have however also been 
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evidentiated , thanks to calculations'-7 which take the full 
mil lt i component nature of the f 1 u id into account. For instance , 
one can represent the system in terms of the well known 
primitive model (PM) of ele~trol~tes~'~, in which the different 
ionic species are assumed to be charged hard spheres 
interacting via a coulomb potential; in general, the coulombic 
forces are also assumed to be screened by a macroscopic 
dielectric   on st ant through which all the solvent effects are 
taken into account. 

Theoretical studies of the structural properties of the PM as 
applied to colloidal systems have been performed by different 
authors within the hypernetted-chain (HNC) approximation2, the 
more sophisticated HNC-Soft Mean Spherical Approximation 
(HMSA)~ of Zerah and   an sen', and the so called Rescaled Mean 
Spherical Approximation (RMSA)'-~. Computer simulations have 
also been performed for different system configurations and 
results compared with structural theories6. 

Some of these results concern HNC estimates of the 'liquid- 
vapor7 spigodal and critical point of a colloid-counterion 
solution 3' and also structural pro erties of charged solutions 
with more than two ionic species'. We report below results 
obtained through the Mean Spherical Approximation (MSA) for the 
phase stability, both of liquid-vapor and of consolute type, 
of charged hard sphere multicomponent fluids, in a parameter 
regime which is close to that typical of real colloidal 
solutions. 

It is known that liquid state theories whose solution is 
based on iterational procedures, as Percus-Yevick, HNC and all- 
HNC based theories , tend to show an highly unstable behaviour 
in the approach to phase boundaries. The algorithm of solution 
tends to converge slowly, and eventually no solution at all can 
be foundQ. More specifically, the numerical routine ceases to 
work when a certain thermodynamic state is reached which in 
some case can confidently be identified as close to, or located 
on, a true phase stability boundary; opposite examples exist, however, in 
which the instability has been found to be purely numerical in 
nature, and thermodynamic quantities ( typically the isothermal 
compressibility) do not show any 'singular' behaviour. 

Approximate structural theories of liquids are also known to 
yield critical exponents which do not take the correct value 
known from the experiment or renormalization group (RG) 

9.10,11 calculations . In what follows we try to illustrate the type 
of information that can be gained also in this respect through 
the use of MSA. This theory, as is well known , is analytically 
solvable and this makes it particularly well suited for the 
purpose earlier exposed. Moreover, it has the advantage that 
its solution can be implemented even in the presence of very 
large asymmetry of charges and sizes of the ionic species, 
whilst this is not the case with iterational approaches like 
the H N C ~ ' ~  . 

The MSA is known to yield unphysical radial distribution 
1256 functions at short range"' and to be affected by a serious 

thermodynamic inconsistency; it has been shownl*,however, that 
when the PM equation of state is calculated in the MSA via the 



'energy route7 130ne obtains qualitatively good predictions for 
thermodynamic quantities. The explanation for this behavior 
rests in a compensation of errors taking place between 
contributions to the internal energy calculated through radial 
distribution functions which are oppositely wrong in the short 
range limit 14. 

In what follows we shall confine ourselves to the MSA 
determination of the spinodal curves of a PM 'colloidal' 
solution, without dealing with structural properties and with 
their possible assessment, amply reported elsewhere1-=. 

We consider a system of particles interacting via the 
potential: 

Ri+Rj 
vij(r) = co r< Rij= - 2 

Z.Z. e2 
v i  j(r) = 1 J  c r r> Ri 

in (1) Ri is the charged hard sphere diameter, Zi is the charge 
number in the i-th ionic species, while c is the dielectric 
constant of a continous medium in which the particles are 
supposed to be merged. 

Potential (1) roughly embodies two basic ingredients of the 
classical Fumi-Tosi potential for alkal i-ha1 ide crystals15, 
namely the harsh repulsion between ionic cores at short range, 
and the coulombic interaction at long range and, as it has 
been shown some time ago l6 it can be used successfully for the 
description of the structural properties of molten alkali- 
ha1 ides. 

In what follows we shall make use of the dimensionless 
temperature ~*=(k ~ e ~ ~ / e ~ ) ,  where Rp is the biggest ionic 
diameter (the colgoidal particle diameter Rp in this case) , 
and of its inverse , the so called plasma coupling parameter I'= 

3 
1/~*; we shall also make use of the packing fraction r)=C.p.Ri, 
where pi is the number density of particles in the1 !-th 
species. The solution of the MSA we use is that due to B ~ u I ~ ' ~  
and Blum and ~ o ~ e " ,  who also gave a set of analytical 
expressions for thermodynamic quantities as derived via the 
'energy route ' . 

We first consider the case of a colloid + counterion 
solution. The ionic sizes are such that 

we further assume Zc.=-1 while Zp>20 (electron charge units 
are used throughout). 

The MSA locus of critical temperatures vs Zp, as deduced 
from the spinodal determined through the divergence O F  the 
isothermal compressibility, is shown in a log-log plot in fig. 
1. The straight line behaviour visible in the figure can be 
represented by the equation T&=0.116 ~ b ~ ~ ~ .  This result is 
reasonably accurate in respect to the HNC estimate Tzr=0.123 
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z;l8 obtained by Belloni3 also reported in f ig.1. It is also 
worth obwervi ng that more refined HMSA cal c~~lations predict a 
displacement of the two phase region towax-d lower 

45. temperatures , unfortunately, the corresponding critical 
temperature locus is not reported in ref. 3, so to make 
possible a detailed comparison; the implication, however, is 
that the MSA result could be more accurate than it appears in 
fig. 1. Another remarkable feature of the MSA calculation is 
that, as discussed by ~ e l l o n i ~ ,  one expects 1 as a value 

Fig. 1: Logarithmic scale representation of the reduced critical temperature locus 
as a function of the colloid charge Zp for a colloid+counterion solution. 
HNG results correspond to a,-=O. (ref-3); MSA results: full line , 4a,-=0.1; 
dashed line: ac. =O.Ol. 

for the exponent of Zp , and 0.937, the MSA results (see 
above) is closer to 1 than 1.18 obtained through the HNC. 

Our estimate of the critical packing fraction at Zp= 20 is 
approximately 0.002, as reported in Table I., a value which 
qua1 itatively agrees with Be1 loni 's one3 who obtained 
vcr=O-006. The MSA critical pressure are also reported in 
Table I. 



Table I 

Table I: Critical parameters for the PM modelling a charged colloidal solution. ac.=O.l (see text) and 
varying colloidal charge are considered. Also illustrated is the correspondence induced by the 

choosing of Rp between thermodynamic reduced quantities and their real counterparts. 

Note that both qcr and P& maR onto realistic molarities and 
pressures when Rp is taken -50 A, a reasonable lower bound for 
the size of colloidal particles. Also note that the critical 
temperature attains v ~ l u e s  comparable to room temperature only 
for Zp-100 and Rp=50 A. 

We now come to the ionic size ratio effect on T&. We study 
this aspect by comparing the extreme case when ac.=l, that is 
when particles have all the same diameter, wih the current one 
in which ac.=O.l. As it can be seen in Table I 1  the critical 
temperature increases when a,.+O . This result could have 
probably been anticipated on the basis of a paper by Stell el 
a1.l8 who first identified the presence of a critical point in 
the PM fluid. According to them phase separation in this system 
is basically driven by ion pairing phenomena. Now, a reduction 
of one ionic size favours closest approach between unlike 
charged particles, thus enhancing the pair stability because of 
the stronger electrostatic attraction. Therefore, in order to 
bring the system to a homogenous phase, more kinetic energy 
(with respect to the ac.=l case) will be necessary to break 
tightly bound pairs, in agreement with what we find . 

Table I1 

Table 11: Effect of the ionic size ratio ac.on the reduced critical temperature in colloidal solritions with 
different charge number Zp. 



110 JOURNAL DE PHYSIQUE IV 

Another manner to investigate the role of coulombic forces in 
determining phase stability is to consider the effect of the 
addition of an ionic salt to the colloidal solution. Under 
usual experimental condition this operation results in a sudden 
lowering of the critical temperature. In our model calculation 
the addition of a 1-1 salt can be mimicked by assuming the 
presence in the fluid of another ionic species , termed 
'coion', for which Zco.=+l and Rco~=Rc.=0.1Rp7while 
counterions belonging to the 1-1 salt are supposed to be the 
same as those present in the original colloidal 
solution. 

In Fig. 2 the effect on of varying the concentration of 
the salt, (also expressible as the coion concentration c=*) 
is reported. It appears that T*,, decreases when thePco.+.Pc. co 1 on 
number increases. This is essentially the result of screening 
that these charges now exert on the colloid-counterion 
interaction. Actually, it is known from previous studies tha t  
condensation of counter ions on colloidal particles is reduced 
when coions are added to the solution1-7. 

We turn now to consider liquid-liquid phase separation 
in mixed charged colloidal solutions. The case we consider can 
be assumed as the prototype of a multicomponent system in which 

Fig.2 : Variation of the reduced critical temperature as a function of the 1-1 added salt for a system in 
which Rc.= Ro.= 0.1 Rp and Zp= 20 (see text). 

charge polydispersity exist for the big colloidal particles. 
The results we report are part of a larger investigation of 
phase stability and phase coexistence in multicomponent charged 



fluids, recently undertaken in cooperation with other authors19. 
We consider a three component charged hard sphere mixture 

in which the two colloidal particles, labelled as species 1 and 
2, respectively, have number charges Z -20, Z -60, and in 1- which species 3 is constituted by counterlons with2-z3= -1; the 
hard sphere diameters are such that R1=R2=10 R3, so that 
colloidal particles are of equal size, and ten times bigger 
than counterions. We characterize the composition of the 
mixture in terms of the concentrat ion c=pl/(p1+p2). 

Liquid-liquid decomposition in such a mixture is investigated 
in terms of the Gibbs free energy of mixing, Gm, vs. the 
concentration, calculated at constant pressures, a condition 
this last, which is imposed in order to reproduce as much as 
possible the actual experimental conditions. To this aim, the 
pressure vs. packing fraction has to be determined at fixed 
temperature for every concentration. A typical set of isotherms 
is shown in fig. 3 for the case c=0.65. 

0.455  
T* 

10 0.417 

Fig.3: A set of 0.413 
isotherms for a 
colloidal solution 

8 
0.408 

mixture containig 
two differently 6 0.405 
charged colloidal a 
particles, Z1 =20 

4 0.400 
and Z2=60, and ,+ 
one counterion 0.397 

species Z3=-1, 
with R1=% and 2 0.392 

R3/RI =O.1 (see 
text) 0 

0.385 

- 2  I 1 I f I I 
0 0.01 0.02 0.03 0.04 0.05 

(note that only the low density portion of the isotherm is 
displayed in order to det.ai l t.he evol ~rt.ion from non-rnonot.on i c 
to monotonic increase of the pressure with the packing 
fraction; also note that all calculations reported below have 
been performed at pressures high enough that P is monotonically 
increasing with r ) ;  see ref.20 for more details on this and 
related points) . 

As is we1 1 known the temperature-concentration spinodal for 
the mixture is defined by the condition 
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which  c o r r e s p o n d s  t o  t h e  o c c u r e n c e  of c o n c a v i t y  c h a n g e s  i n  t h e  
G, v s .  c p a t t e r n .  

F i g .  4 r e p o r t s  G, at d i f f e r e n t  c o n s t a n t  r ' s  ( o r  T * ' s )  . 

Fig. 4: Gibbs free energy of mixing G vs. concent~ation at fwed pressure P= 0.01 
( in reduced e 2 / ~ $  units) anydifferent fxed r s ,  for the mixture of fig. 3 

Fig.5: Inverse-temperature vs. concentration spinodal for the mixture of fig.3. 



It can be appreciated that at sufficiently high coupling, that 
is for sufficiently low reduced temperature, inflection points 
appear in the Gm pattern thus indicating the occurence of phase 
instability with respect to concentration fluctuations. The 
locus of these points is reported in fig. 5 and constitutes the 
liquid-liquid spinodal for the present system. 

The main feature of fig. 5 is the presence of a lower 
consolute point in r ,  corr-esponding to an upper consolution 
point in temperature, and the shift of consolute critical point 
toward the lower-charge component (species 1) rich-end . 

These results can be interpreted in terms of the different 
effect that the addition of 1 or 2 particle has on the 
equilibrium of the mixture, and on the competition between 
different physical contribution to the Gibbs thermodynamic 
potent i a1 . 

In fact, the process of segregation is obviously 
accompanied by a decrease in the total entropy of the system; 
this amounts to inducing a positive variation in the Gibbs free 
energy 

on the other hand, the same segregation favors the formation, 
with respect to the mixture where positive charges are more 
randomly distributed, of we1 1 defined and highly packed 
clusters of oppositely charged particles (we mean particles 2 
with 1, or particles 3 with I), and these clusterization 
implies a decrease of the configurational energy AU<O which 
more than compensate for the entropic increase in A G M  before 
envisaged. There is obviously an extra-term associated with 
volume variation (see eq.2); however, we have shown in a 
previous paper21 that this contribution is not able to modify 
the qua1 itative aspect of the aforementioned competition 
between entropic and coulombic energy effects. 

The presence of a 1.c.p. in fig. 5 can now be understood if 
one considers that the role of coulombic interactions is 
enhanced when I? increases (or T* decreases); it is also 
reasonable that the spinodal is asymmetric toward the less 
charged species rich-end since relatively few highly charged 2 
particles affect the properties of the fluid more than an 
equivalent amount of low charged particles 1. 

The conclusion that can be drawn from the present study is 
that despite the serious shortcomings of the MSA, a judicious 
use of this approximation might reveal fruitful in the context 
of phase stability behavior investigation , especially if the 
'energy route' is used to construct thermodynamics from the 
structure. At this proposal it could be worth trying to assess 
the performances of this approximation against more refined 
theories and/or computer simulation results, in a limited 
number of representative cases of ionic fluids. This would 
allow one to establish well defined benchmarks to the MSA 
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predictions as far as the stability of thermodynamic states is 
concerned. Such a qualitative knowledge of the phase behaviour 
of ionic fluids coilld be useful , e.g. , to experimental ists 
interested to define broad intervals of physical parameters 
where phase equilibria or decomposition of colloidal systems 
may take place. 

References 

1. For a review on liquid structural theories as applied to 
charged col loidal solutions see : R-Klein, " The structure and 

dynamics o f  strongly interacting colloidal liquids", Proceed i ngs of the NATO-AS I 
School on Strongly interacting Colloids and Polymer aggregates in Solution, 
Acquaf redda di Maratea, Italy, (1991) 

2. M.Medjna-Noyola and D.A.McQuarrie, J-Chem-Phys. z, 6279 
(1980); L.Belloni, J.Chem.Phys. 85, 519 (1986); H.Ruiz 
Estrada, M.Medina-Noyola, G.Nagele, Physica B, 919 
(1990); J.P.Hansen and J.B.Hayter, Mol-Phys. 46, 651 (1982). 

3. L.Belloni, Phys. Rev. Letters z, 2026 (1986). 

5. J.M.Mendez-Alcaraz, B.D7Aguanno and R.Klein,Physica A 178. 
421 (1991);R.Krause7B.D'Aguanno, J-M-Mendez-Alcaraz, 
G.Nagele, R-Klein and R-Weber, J.Phys. C:Cond. Matter 9, 
4459 (1991). 

6.  P.  Linse, J .Chem.Phys. m, 1376 (1990) ; Jid., a 3 8 1 7  (1991). 

7.H.Lowen, P.A.Madden and J.P.Hansen, Phys. Rev. Letters 
68,1081 (1992). 

8 .  G.Zerah and J.P.Hansen, J.Chem.Phys. a, 2336 (1985). 

9.  S.M.Foiles and N.W.Ashcroft, Phys. Rev. A=, 434 (1881); 
P.D.Pol1 and N.W.Ashcroft,Phys.Rev. B, 5167 (1987); 
F.Gal lerani , G.Lovecchio and L.Reatto, Phys. Rev. A=, 
511 (1985). 

10. C.Caccamo, G-Giunta and C-Hoheisel, Phys. L e t t . A m ,  325 
(1991); M.C.Abramo and C.Caccamo, Phys. L e t t - A m ,  70 
(1992) . 

11. A. Meroni, A-Parola and L-Reatto, Phys. Rev. A s ,  6104 
(1990) . 

12. B.Larsen, Ph.D. Thesis,University of Trondheim ( Norway) , 
1979, and references therein quoted; B.Larsen, 
J.Chem.Phys.m, 4511 (1978); M-C-Abramo, C.Caccamo and 



G-Pizzimenti, J.Chem.Phys.B, 367 (1983);C.Caccamo and 
G.Malescio, J.Chem.Phys.m, 1091 (1989); C.Caccamo, 
J .Cllem.Phys. U, 4902 (1989). 

13. J . P  .Hansen and I .R. McDonald, Theory of Simple Liquids, Academic Press, 
London, 1976. 

14. E.Waisman and J.L.Lebowitz, J.Chem.Phys. a, 3086 (1972). 
15. M.P.Tosi and F.G. Fumi, J. Phys. Chem. Solids 25, 45 

(1964) . 
16. M.C.Abramo, C.Caccamo, G.Pizzimenti, M-Parrinello and 

M.P.Tosi, J.Chem.Phys. 68, 2889 (1978). 

17. L.Blum, Mol.Phys.3Q, 1529 (1975); L.Blum and J.S.Hoye, 
J.Phys. Chem. 81, 1311 (1977). 

18. G.Stel1, K.C.Wu and B.Larsen, Phys. Rev. Letters z, 1369 
(1976) . 

19. C.Caccamo, E.Caponetti,M.A.Floriano and R.Triolo, (in 
preparation) . 

20.C.Caccamo and G.Malescio, J.Chem.Phys. x, 1091 (1989); 
C.Caccamo, J.Chem.Phys. a, 4902 (1989). 

21. C.Caccamo, M-Varisco, M.A.Floriano, E.Caponetti, R-Triolo 
and G.Lucido,J.Chem.Phys. m, 1579 (1993). 


