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Thermalization of subexcitation electrons in a medium with time 
dispersion 

S.V. STEPANOV 

Institute of Theoretical and Experimental Physics, 11 7259 Moscow, Russia 

Abstract 
The slowing down process of light charged subexcitation parti- 
cles of finite size in a medium with time dispersion is conside- 
red. The theory developed is applied to the slowing down of the 
secondary electrons knocked out by another energetic particle. 
Total energy loss is made up from the Debye losses, excitation 
of intra- and intermolecular vibrations and the mutual Coulomb 
attraction between parent ion and knocked out lectron. In this 
case the process is essentially transient, and energy loss rate 
is explicitly time-dependent. 

1. Introduction 
Having no possibility to ionize and to excite molecules, subex- 

citation particles (electrons, positrons, muons) lose their energy by 
exciting molecular vibrations, by transferring to the medium a defi- 
nite quanta of energy. In polar media there is an additional way of 
energy losses: orientation of the dipole molecules. Fortunately, 
these processes could be treated in the frame of classical electrody- 
namics, because during its slowing down, the particle loses its ener- 
gy W quasi-continuously, by small portions in comparison with W, 
exciting vibrations and ordering slightly dipoles. 

Since the paper of Tachiya and Sano (1) devoted to the 
theoretical consideration of the Debye energy losses of finite size 
particles, the problem seemed to have reached to its final solution. 
Nevertheless, recently was found (2) a puzzling disagreement between 
their formula and the Zwanzig expression (3) for dielectric friction 
force in the case of slow moving particle. In (2) were pointed out 
two causes which have lead to erroneous formulas in (I), and 
developed another approach for calculation of the energy loss rate. 

Being an exactly solvable model, the problem of the Debye energy 
losses of the charged finite size particle now has more pedagogical 
rather then practical interest, because, as it was noted by different 
authors, the processes of excitation of intra- and intermolecular vi- 
brations give the main contribution to the slowing down of the charg- 
ed particle. Previous considerations of this problem have three draw- 
backs which we will try to overcome in this work: 

1. Taking into account excitation of vibrations into the total 
loss rate -W of the particle, one usually starts ( 4 , 5 )  from the known 
expression for -W in the case of stationary moving particle 
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where J(w) is a spectral function which depends on the type of motion 
of the partiche (2), E(D) is the dielectric susceptibility. Then, the 
function Im - is independently summed from the inverse Debye part 

E ( w )  
of die lec t r ic ' s 'uscep t ib i l i ty  and resonance-like terms which corres- 
pond to vibration excitations. Really, such a procedure is not exact 
because I/E(w) is not an additive quantity, while &(a) (or polariza- 
bility) is. 

2. Ionization process and subsequent slowing down of the elec- 
tron is essentially transient: thermalization time tth could be com- 

parable with the Debye dipole relaxation time c , t / r  = 200 fs (see 
0 

section 3). Therefore, starting the calculations from eq.1, which re- 
presents stationary motion of the particle seems questionable. 

3. Obviously knocked out electron interacts strongly with parent 
ion at small distances between them. This should also be taken into 
account as well as time dependent character of the screening at the 
considered time scale. 

The aim of the present paper is a consideration of the slowing 
down process of the light charged particle of a finite size in polar 
medium with time dispersion. As applications, we keep in mind therma- 
lization process of the knocked out subexcitation secondary elec- 
trons. Our approach allows to estimate their time and length of ther- 
malization. These values are of interest in many problems in radio- 
chemistry and radiobiology. 

2. Dynamics of the slowing down particle 
In dispersive media, it is impossible to give a reasonable defi- 

nition for the energy of electro-magnetic field as a thermodynamic 
quantity. Nevertheless an expression for the electro-magnetic flow S 
- C - - 

4 n [EH] holds in dispersive media (6). The following relationship 

for the energy conservation law in differential form follows directly 
from the Maxvellls equations 

1 a D  SB div S = - --(Ex + H x )  - 1 p i G i ~  . 4n (2) 
Here E(r,t) and D(r,t) are the electric field and the displacement at 
point r and time t, produced by the particles. pi  describes charge 

distribution of the i-th particle, which has the velocity G i .  
Integration of div S over the whole space gives the variation 

per a unit of time of energy of the field, the medium and the kinetic 
energy W of the pprticles, and because these entities compose an iso- 
lated system, 1 d r div S = 0. Hence 

We omitted here the magnetic term, which is very small for the par- 
ticles moving with velocities much less than that of light. 

Let the charge distribution of the particles be constant inside 
a sphere with the radius a. As applications, we identify a with the 
radius of the Wigner-Seitz cell. 

In eq. 3 D(r,t) is the sum of the displacement Di (r) of the ion, 

which we assume to be unmovable, and De(r-~(t)) is the displacement 

of the electron placed at x(t): 
r/a , r<a i (r-X) /a3, 1 r-x 1 <a 

D = Di+ De, D = e. , D = -e. 
3 (4) (r-x)/]r-x] , lr-xl>a 

Here e is the positive elementary charge. 
The nature of the dielectric losses relates to the polar medium 



which can not adjust rapidly enough to the instantaneous position of 
the particle. The delayed reorientation of the dipoles results in an 
electrical drag force on a moving particle. Such a retarded response 
of the polarization P(r,t) may be described in terms of the memory 
function T (t) 

. t 

If we take into account excitation of vibrations, this equation holds 
as well. Fourier inversion in frequency leads to the relationship 
between ~ ( t )  and the reciprocal dielectric susceptibility: 

Above formulas assume that D(r,t) = E(r,t) + 4nP(r,t) in the time re- 
presentation and 

D(r,w) = r(w).E(r,o) = E ( r , w )  + 4nP(r,o) 
in the Fourier transform. Using eq.5 we can rewrite eq.3 as 

( 7 )  

1 3  a -i = , Jd r ( D i  (r) -4nP (r, t) )K D (r-x(t) ) = 
e 

t 

Here x(t) = J Gdtl, a(t) = (2~/m~)'/~ is the velocity of the particle 
0 

and me is its mass. Calculations of the integrals involved gives 

a 
= u  fd3r D (r)-;--D (r-x) = - 

e O X  e a ( ~ 1 x 1 ~  I x>a . 
Here we carry out an integration over the whole space, including the 
volume of the particles. If we would like to calculate energy losses 
outside the moving particle only, in eq.9 we should exclude the vo- 
lume of the particle around its final position at r-x(t). In this 
case the last integral is by a factor of 213 smaller in accordance 
with (3, eq. 16) . 

Further calculations correspond to the straightline r~moval of 

the knocked out electron from the parent ion, i. e. x(t) = Sa(tl) dtl. 
0 

It implies that there exists unambiguous relation between W, x and t, 
which could be obtained inserting eq.9 into eq.8 (we assume here that 
t 2 a / u  and x(0) r a) 

a/ u  x (t) -x(t-tl) t 
a 

+ J 7(t1) a 2dtl I 
o a/.u 

Assuming for simplicity x(t) - x (t-tl) = u (t) .tl, finally we get 
2 t e 0 -w = - a 

[(l-J7(t1)dt1).( ,o 
a  

l 2  + 
0 
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3. Memory function ~ ( t )  

Polarizability of the molecule (and consequently, dielectric 
susceptibility of the medium) itself represents the sum of additive 
contributions: electron, orientational, vibrational with respect to 
different types of polarization. Applying oscillator model for the 
description of vibrational polarization, and using standard expres- 
sion accounting for Debye relaxation, we obtain the following formula 
for total frequency dependent dielectric susceptibility 

E (o) = Em + - 4ne2 , w 2 = -  
1 - L o t  j w -o -Lor p Rm ' 

03 J P 

Here e0 and rW are the static and high frequency Debye dielectric 

constants and t is the Debye relaxation time. f is the oscillator 
J 

strength characterizing the intensity of j-th vibration, Tj, its dum- 

ping and w  is its resonance frequency. R is the volume per one mo- 
Oj 

lecule, m is the proton mass. o = 2.41-1014 s-I or 1277 cm-l. 
P P 

Taking the Fourier transform from eq.6, we can express ~ ( t )  

1 First of all we extract from 1-E(W) the frequency independent part 

, which describes the instantaneous response because of the 1- - 
&a 

electron polarization: 

wdf 
Here R 2  = 3 and c = co/cm. Term 1 - 1  gives a &-type contribution 

j 'm ' m 
1 1 into ;l (t) . Now we have to find the poles of the last term - - - 
Ern &(w) 

in eq.14. Without vibrational modes, pole responsible for Debye re- 
laxation, is in the complex plane at 

i ‘, = - i% = -- , t =  z/e , t = 0.85.10-" s, inwater. 
mt tr 

As a rule this frequency is essentially smaller than resonance vibra- 
tional frequencies. Therefore from eq. 14 we obtain the shift of the 
Debye pole because of the presence of vibrational excitations in the 
following form 

Neglecting the overlapping of the different vibrational resonances in 
~(w), the positions of the poles are defined by equations - - - -2 

w  = +o o = o + irj/z , o = w2 + nZ- (r,12)~ . 
oj 0 j oj J (16) 

Calculating the integral in eq.13 using the subtractions technique, 



we find 
1 E-1 l-p exp (-pt) + y(t) = (1- 1) 6 (t-0) + - - 
m 

c,r l+cp 

LL . E-1 + 1 --1. - exp (-r.t/2) . (sin; 0 j t + cos; 0 j t) (17 
j 'mWoj 

W T 
0 j 

If we integrate this e_xpression over t from 0 to m, in leading order 
on cp and in the limit o >> r / 2 ,  we reproduce eq.6 for o=O 

OJ j 

w 1 1 W2 f 
J- y(t) dt = 1 - = I -  - , & =  ES- r a .  
0 &s  

(18) 
j W 

0 j 
J 

Here E is the static dielectric constant (for water c = 78). It is 
S 5 

necessary to note that the number of resonance terms in eq.17 
strongly depends from the energy of the particle. We have to multiply 
each f on b(W-ha ) (zif(z>O)=l, b(z<0)=0). It implies obvious rest- 

I Oj 
riction: the particle with the energy W could not excite vibrations 
with the energy haoj, if W<hooj. 

Substituting eq.17 into eq.11 we obtain the final expression for 
- f ~ .  Integrals in eq.11 could be expressed through the special functi- 
ons E, (z) , Si (z) and Ci(z) . - 

To find the values of parameters f w~~~ T i  and z0 let us ex- 

press -1m l/e(w) from eq.12 in the vicinity of resonance vibrational 
maxima on the real axes 

R" l- 

and fit the experimental data (7,8) for -1m l/& (o) in water at room 
temperature, fig.1. As a result we obtain (&,= 1.8) 

4. Results 

To visualize the influence of vibrational resonances on the 
Debye losses let us present the relationship for -W in the limit of 
stationary moving particle: t+m, but a = const. In this case from 
eq.11 and in the particular interesting limit of atr/a >> 1 we obtain 

presents the mutual "interferencew of the Debye Multiplier - 
1-9 

losses and vibrational excitations in the function. l/~(w). It dimi- 
nishes the contribution of the Debye losses into -W. Eq.20 could be 
directly derived from eq.1, using eq.14 for l/&(w). 

The solution of eq. 11 is presented on f ig.2. It describes ther- 
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Fig.1 Imaginary part of 
the inverse dielectric 
susceptibility of li- 
quid water at room tem- 
perature. Recalculated 
from (7,8). 

Fig.2 Slowing down of 
the knocked out subex- 
citation electron in 
water at room tempera- 
ture. Straightline re- 
moval from the parent 
ion is assumed. x(t) is 
the coordinate of tce 
electron, a = 1.93 A, 
the radius of Wigner- 
Seitz cell. W(t), the 
kinetic energy of the 
electron, and -W, its 
energy loss rate. 

Fig.3 Thermalization 
distance in the units 
of Wigner-Seitz radius 
a, and thermalization 
time in fs vs initial 
excess kinetic energy 
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malization of the subexcitation secondary electron in water at room 
temperature. We assume that at t=O electron has an initial kinetic 

2 e energy w(t=O) = CaX(t=O) + W, and starts its motion at x(t=O). Real- 

ly particular choice of x(t=O) is not very important for our calcula- 
tions, because corresponding change of initial kinetic energy will be 
compensated because of the interaction with the parent ion. Wm is the 

excess (over ionization potential) initial kinetic energy of the 
electron. Roughly speaking, if the primary particle transfer to the 
secondary electron the energy IL+ Wm (IL is the ionization potential 

in liquid) then, passing the distance SlOa, as it is seen from fig.2, 
the particle loses the first part, ILl because of the interaction 

- 

with the ion. On these distances the contribution of vibrational 
excitations and Debye losses into the slowing down process is small. 
At x(t)?lOa thermalization process is governed by the energy dissipa- 
tion to the medium and at time tc(Wm) and distance x(tf ,Wm) the kine- 

tic energy of the electron decreases down to thermal. 
To obtain thermalization time t and distance lth, it is neces- 

th 

sary to average tf (W,) and x (tf, W,) over Wm. Corresponding distribu- 

tion function is known, and for knocked out electrons with Wm i 50 eV 
has the form 

f(wrn) = [I~/(I~+w~) I * . ~  (21) 

In water IL= 8.7-8.9 eV (9). On fig.3 are shown the dependencies 

tf(W,) and x(tf,W,), which have to be weighted by f (W,) . We consider 
here slowing down of subexcitation electrons only. So we did not take 
into account possible subsequent ionizations by secondary electrons. 
Therefore W, has to be less then IL. Averaging tf (W,) and x(tflWm) 

with the weight f (W,) within the energy interval O<Wm<IL, we finally 

obtain tth= 15-18 fs and tth= 50-60 a = 100-120 A. 
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