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Universality of chargelspin density waves linear properties 

S .  Brazovskii 

Landau Institute for Theoretical Physics, Moscow, Russia 

Abstract. - We reconsider microscopic grounds for the electric field and for the phase dyaanlics 
and relaxation of CDWJSDW, mostly for pure systems. We suggest a transparent form dynamic 
and dissipative equations for the DW phase and for electric field. The approach is based on a 
helpful relation between a "generalized condensate density" and a complex dielectric susceptibility 
of intrinsic carriers. Separately for CDW and SDW we discuss tlle spectra and the attenuation 
for the TO and LO modes, the low frequency relaxation, the intrinsic nonlillear conductivity. 

1. Introduction 

Recently we have suggested [I] a very general and transparent way to derive response and 
condensate properties of Density waves (DW). This approach helps to avoid special calculations 
of earlier studies by virtue of a manual book information on normal electron properties of a corre- 
sponding semiconductor or a semimetal. It is based on the observation that the total longitudinal 
force F experienced by electrons under the DW phase deformation cp = cp(z, t )  and arl'applied 
electric field E, = E is given by the invariant combination F = E - (v/2)(p1' + (1/2v)@, where 
v is the Fermi velocity of a parent metal (from now on the electron charge e = 1, A = 1). The 
substitution of E for F corresponds to a transformation of electron wave function to a local frame 
of an arbitrary distorted DW phase. In this respect we distinguish l~etween "extrinsic" a,nd "in- 
trinsic" carriers relative to the DW electronic spectral gap A vicinity in a sense that the first are 
subjected to the field E solely while the second experience the combined force F. The responses 
of these particles E ,  and ~i to E and F correspondingly are chasac.terized completely by their 
partial co~llplex dielectric function contributions E,; a = e,i Relevant partial parameters A;', 
w, and ua/47r are the Debye screening lengths, the plasma frequencies and the co~lductivities of 
corresponding carriers. At A + 0, A, + K = wp/v; wa = wp are the plasma frequency and the 
Debye length, which are parent metal parameters. 

Surprisingly relations between cp, E and electric induction D and all their consequences can 
be written at all 0 < T < TMF and w, vqll < A in ter111s of ei and E ,  [I]. Neglecting extrinsic 
carriers as well as other host contributions we arrive at a specially sinlple form of these equations. 

The total dielectric response E in (lc) should be found by exclucling cp fro111 (la&). In (la,b) 
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Here q2 = q; - w2/v2, g = A/Ao, ij'= ( q I I , q ~ ) ,  A = A(T), A. = A(O), A(TMF) = 0; Q2 
is a sum of restorting forces which are due to an interchain DW elasticity N a, to a possible 
commensurability pinning and to the CDW lattice inertia; u ancl y are lattice contribution to 
the CDW velocity and to a DW attenuation. Eq. (lb) shows that B is the effective coxidensate 
density and the charge of the DW. Eq. (la) relates it to the illtrillsic carriers electric response E; 
which is the most instructive part of our approach. Typically we expect 

E i  Q + min {hj/q;, -wl/w2, ioi/w} ; m .- w:/QoA; = a2p,; w: = w;;,, (3) 

And 5, < p, < 1. Comparing (la) and (3) we see that p, and p, = 1 - p,,(T) should coincide a 
priori with the BCS-like norrnal and colldensate densities for a given 3d electronic spectrum ancl 
nesting conditions. Analogously p", = 1 - p", is the electronic contribution to the DW effective 
mass.Actually B is not real, and taking it's imaginary part (dissipative screening) property into 
account is a source of disagreements between some our results ancl the earlier rather common 
ones. 

In more details, near TMF we have a singular intrahand contribution [2] at small qil and w. 
Following a standard narrow gap semiconductor formula for ~i we fincl at T >> vqll,w >> 7;': 

This is a transparent derivation for the two different q11,w limits fo cx 71 and fi oc. g2 [3] for the 
effective condensate density. Moreover we see that B is real only at w = 0 ancl at w2 > v2qi, while 

the imaginary part dominates almost everywhere in the sector q2 > 0: SB/???B (l/r))lw/vql >> 
1 at g << Iw/vqlll < 1. The second anomalous t e r m  i n  (4a) dominates everywhere when it is 
real at q2 < 0. The singularity at q -+ 0 in (4) saturates at Ivqlwl < 7) when B reaches its 
parent metal limit B = 1 so that DW is ignored near the zero souncl resonance [3]. These effects 
may be viewed as a giant Landau damping of plasma modes enhanced here due to a negligible 
perpendicular dispersion of longitudinal velocity vll for an open Ferlni surface. Unusually this 
velocity resonance a$ects also the real spectra. We should worn against interpretation of B(f,w) 
as an effective condensate density at w # 0 and especially against its separation near TMF in 
two asymptotic types of condensate densities: the static fi cc 7)' and the dynamic fo cx g as in 
[3]. This concept may be misleading as in theory of [4] where the dynainiC value f o  was used in 
essentially thermodynamical calculations which can he hardly justified. Moreover for relatively 
low frequencies of sliding DW oscillations one certainly expects wr i  << 1 so that within the 
hypothesis qll = 0 one would have B = 1 - iwai/wi 21 1 rather then g or g2. What is also 
discouraging in these interpretations is that as a function of w B(w,q11) is real only at these 
two limits fl at w = 0 and f o  at w/qll  = co. In between the imaginary part dominates almost 
everywhere at 0 < w2 < v2qi. This feature seenls to have been overseen in previous studies where 
the relation (2) was not noticed and the singularity (4a) was not properly analyzed. 

. 

2. The transverse optical spectrum. 

It is defined by the condition E = 0 which we obtain fro111 (11)) as the equation Bq2 = S12. 
CD W near TMF. Following (2)  and (4) the spectral equation acquires the for111 

We see that the bare DW self attenuation y acquires additional part y + y + (C/g)(lql lv), C 1. 
At Qo = 0 the attenuation may be relatively small and the TO spectrum can exist only if 



71 >> U / V  i.e. far enough below TMF and provided tliat the mass enhancement is really large: 
v/u >> 1. For Qo # 0 there is a finite interval of nonattenuated oscillations q11 < Qou/v e.g. 
w(0) = GQ0, v2/.ii2 = ( V / U ) ~  + 1/71. 
The S D W  at low temperatures. A remarkable feature of the SDW case u + co is that the 
regime R x 0, may be achieved at q l  = 0 neglecting own attenuation ancl the pinning. Then e 
coincides with it's free electron form of the parent metal E 3 ti2lq2 at all temperatures [3]. If the 
SDW perturbations like q l ,  y, qo are considered then the intuitively expected SDW TA spectrunl 
appears at w2 v2qi + Qi, Qi = qi + aq:. Notice tliat for Qo = 0 the e; contributions cancels 
at all w, qll, SO that e.g. the intergap absorption at o 2 2A will not be visible unless a pinning or 
a perpendicular component of polarization provide the SDW restoring. 
The SD W near TMF.  At zero restorting force Qo = 0 there are no spectra except for the sound 

one w = vqll at all temperatures. But for Qo $; 0 the spectrum evolves differently then at low 
temperatures because the anomaleous term in (4) dominates being real unlike for the CD W case. 
In a very broad range of w: 0 < -q2 << Qi we find the spectral equation 

so that e.g. the perpendicular dispersion curvature or the pinning frequency are renormalized as 
a! + aq, qo + q1/2qo. The spectrum (6) starts at the frequency w(0) = v Q O ~ ' / ~  at qll = 0 and 
converges to Fermi velocity at large qll. 

Very close to T M F  at 71 << U / V  a similar spectrum (6) exists also for the CDW case at 
Qo $; 0 when the attenuation can be avoided as long as vlqll 1 < IwI holds for the solution of (4). 
Now the same equation (6) is applied but at more essential constraints to prevent crossing the 
dissipation borderline w = vqll: vQoq << IwI << uQo i.e. at Qoqvlu << IqI << Qo. 

3. The longitudinal optical spectrum. 

It is defined by the condition D = 0 which leads us from ( la )  to any of the equivalent 
equations: 

Eq. (7b) demonstrates the sign inversion of both w2 - and qi - contributions. It will be responsible 
for the negative qll-dispersion of the CDW LO gap mode and for the al~sence of the gap  node for 
the SDW against and also for the CDW close to TMF.  
CDW LO spectra at low temperatures. At finite q! > p,,ti2 the Coulo~nb gap at wc - Aulv 
comes from (7b). But against commonly accepted expectations the qll dispersion is found with 
the opposite sign. This observation tells us that (at p,, = 0) we deal with the top of a phonon 
spectrum rather than with the bottom of a heavy plasnlon spectrurn.Tl~e standard formulas [3] 
definitely give the positive sign of qi corrections. This bare small positive curvature - +qi/n2 

is nlajorated [I] by the large negative contribution -qiEi from the B-factor in (7a). At the 
same time the perpendicular dispersion has a positive curvature so that in full 3d picture the zero 
temperature "LO gap" is actually the saddle point of the phonon spectrum. 

For finite X at small qll the Coulomb gap is screened which is usually supposed to lead to 
a sound spectrum w x ~ I I V L ,  VL x u/&. Actually the validity of linear spectrum is limited 
to rather high T by a requirement of relatively high concentration of carriers when their plasma 
frequency wi is high enough to provide the static screening p",, > (ulv)' so that v~ < wi/X; = VT, 

where VT is the thermal velocity or a small Fermi velocity of remnant carriers, e.g. for u/v - 10-I 
we need T > A o / 5  Otherwise at lower T when (ulv)' > p",, the Landau attenuation is known to 
become of the order of frequency and the LO spectrum disappears. The attenuation becomes weak 
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again only at small qll and at finite w when we come to the dynamic  regime of llornlal carriers. 
Then for the CDW there are always two solutions: 

a : (WIG)' = q; + aqi  - qi, ( V / C ) ~  = ( V / U ) ~  + (p"s/p",,) and 1) : w2 = w& + wf (8a, b) 

The low frequency wl is adjacent to the sound spectrum whicll existed for intermediate T .  It 
describes either pinned (qo # 0) or nonaligned (ql # 0) modes. It is characterized by exponentially 
growing effective mass, to be compared to similar growing velocity at high T .  Notice that the 
spectrum (8a) also has a saddle point structure so that it exists only at small qi < aqf + q& 
The low temperature regime have been missed in discussio~ls of LO screened nlodis [2] while the 
spectral studies of high gap CDW [5, 61 may well fall to this region. 
SD W LO spectrum.  For the SDW the linear spectrum due to static screening does not exist which 

follows formally from (7a) since in this case R2 < 0. There are no Coulomb gap modes below w, 
[3] since at u + oo the -- w2 term in (7b) changes the sign [2]. But the  low frequency regime (8a) 
which is due to negative E, exists for t he  SDWfor all p,, << 1: w2 = (p",,/p",)v$(q; + aqf - qi). 

CDW and SDW LO spectra near  TMF.  As well as for the TO mode the LO spectrum exists 
strictly speaking only at q2 < 0 when B is real and positive. So it is defined at R2 < 0 which 
always holds for the SDW or at R2 > -q2 which is possible for the CDW. We find the two 
bra~lclles of the SDW LO spectra: naturally the high frequency one goes very close to the metal 
plasma spectrum and the low frequency one starts at the finite frequency w(O) % vQo& at q11 = O 
and approaches the Fermi velocity at qll >> Go&. At all '111 this branch goes very close to the 
TO spectrum (6). 

For the CDW case similar results may hold but in a very constraint region VQII  < uQo whell 
C12 < 0. At larger qll the lattice inertia reduces the ratio w/qll below v i.e. to the region of strong 
attenuation. At relatively large 7 > u/v the convelltio~lal low velocity LO mode appears from the 
overdamped region w < vqli. Again this LO mode is close to the low speed TO mode (5). 

We must recognize some mistakes i11 describing LO modes in the earlier version [la]: 

4. The LO mode attenuation and relaxation. 

Consider now in more details the frequency dispersion at ij'= 0 including the DW attenuation and 
the conductivity. For negligible atte~luation we find again the combined Coulo~xlb gap and the 
normal plasma mode which corresponcls to a high frequency solution of (7) at qo = q l  = qll = 0. 
At any arbitrary T it is given as 

This spectrum exists only for the CDW and not very close to T M F  wlle~l the denon~inator is 
positive. 

The low frequency LO relaxation ro is given by imagi~lary zeros of Eq. (7) w = ire. For 
various limits it simplifies as 

where G2 = W: [ ( ~ v / u ) ~  + p " S / p " , , ]  The case (9a) correspo~lds to a well  screened Coulomb gap 
when the dissipative part of ei dominates unlike the cases of the static and of the dynarnic (8b) 
regimes of screening. Oppositely the case (91)) corresponds to the nonsereened but overdamped 
Coulomb gap. In case (9a) the low frequency relaxation Fo coexists generally with the oscillating 
mode while in case (9b) there are only relaxational modes (two others are of higher rates then 

(9b)). 



Tlie approxiniation (9a) corresponds to a frequently exploited result of [7] when, as we see 
here, one should imply lower bounds for the product of tlie normal ancl the DW conductivities. At 
intermediate T < TMF when p, - p,, 1 and ai a,,, (here G,,, is a metallic conductivity at 
T 2 TMF) the condition (9a) requires that for CDW: 4- >> 101/0h7n. cm;and for SDW: 
4- >> 105/0hm. cm. These condition m a y  be satisfied only marginally even for the best 
conducting semi~netalic CDW like in N B S e s  or for orga~iic SDW where the giant contribution 
competes with the very high co~lductivity. 

For limiting cases 7 -+ 0 and g + 1 we should take into account a temperature dependence 
of h ,  via p",, - 71 near TMF and especially the exponential dependence on T of both h and ai via 
p, exp(-Ao/T) a t  low T. In terms of scattering time ri = ai /uf ,  ri(TMp) = rVn the same 
condition reads: 

The deriominators in (10) are large if T is not very low since Aor,,, >> 1 by definition. Then there 
is a place for expected small ratios of a ~ w l a , ,  and consequently for tlie screened gap regime. 

Oppositely in case of low conductivities (9b) i.e at inequalities opposite to (10) we find the 
overdamped Coulomb gap relaxation regime (9b). All conductivities contribute additively to ro 
being reduced (tremendously for the SDW) by €a1. Nevertheless the LO relaxation is strong 
enough to suppress all oscillations: no gap lnode can be seen in Ranlan or corresponding neutron 
scattering spectra. 

5. The applied field, the bias current and the nonlinear conductivity. 

Eq. (12a) describes completely local properties of the phase statics, clyliarnics and relaxation 
for a general nonlinear pinning problem except for dislocatio~is vicinity when ~h cannot be omitted 
[8]. I t  takes in to  account the  countercurrents, screening and the  Coulomb hardening (see [9] and 
references therein). The pinning force which is contailled in the R2cp terln can be generalized as 
qgv + 6Wpi,,(p,q/6v, where Wpi,, is the pinning energy which is periodic i11 (P and depends 
011 coordinates ?for the impurity case and w, f + ( i d / & ,  -ia/d?). The bias voltage -EoL, or 
the total current J are controlled by introducing the electrical induction D of the whole sample. 
By definition we have in Fourier components, D, = ~ ( w ,  O)Eo,; -iwD, = 47~5,. This approach 
contradicts in many respects to a typical view on the pilinilig problem based on Eq. (12b) where 
the local field E is interpreted as a bias one Eo. (Studies [lo], [ll] in applications to CDW are 
among rare exceptions). First the Eq. (la) shows clearly that the D W driving force is  no t  Eo 
but a value E* determined by the total current J :  

Here tlie relation was employed J = Eoa,, + Jsl which follows from Eqs. (12a,b) if we neglect the 
remnant  distortion < cp" > which should and have heen proved [12] to be present also in unpinned 
DW when ci, is not large enough. We see that at Eo < ET when JSl = 0, E* = Eo so that the 
value of ET is given by Eo directly. Tlie model (12b) with E + Eo may be applied to deterlnine 
Er at T = TMF, hut at lower T the Coulonlb liardeliilig p, -+ p,/p,, niust be taken into account. 
It is ignored somehow in all applicatiolls to SDW in of the fact that at T - 4K p,, - lop2. 

At Eo > ET the D W current i s  a function of E* rather t h a n  of Eo. We arrive at the following 
I - V and differential characteristics 
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Here Jsr(E*) is a solution for the DW sliding problem (12a) under the force E*, a,( is the so called 
nonlinear conductivity which is usually obtained experimentally by differentiating the nonlinear 
current Jsl = J - J, over the voltage Eo. The proper information on the DW sliding is given 
by the dependence of Jsl on E* ancl the inherent conductivity is the value as, rather t ha~ l  u,~. 
The corresponding resistance a:' is given as a sum of the nonlinear ancl of the normal resistances 
(12c). At small nonlinearity: a, >> a,l we have naturally a,[ a,,[. Otherwise the differential 
experimental data for u,,l must be recalculated following (12c) or current-voltage J - V plots 
must be reexamined for J,,, as a function of J rather the11 of Eo, (12a). In the absence of pinni~ig 

The approximate relation (13c) corresponds to the case (9a). Eq. (12a) provides also [I] a natural 
phenome~lological classification of J - V curves including the bistal~ility effect of [lo] and other 
possibilities. 

6. Conclusions 

Near TMF above single particle attenuatio~l rate both LO and TO spectra are do~iiinated by 
singularities of ei at the Fermi velocity line q2 = q i - ~ 2 / v 2  = 0. For the CDW the co~ive~itionallow 
velocity mode falls into the strong Landau damping region. At lower T the existence of a screened 
LO sound mode is confirmed only at rather high concentration of normal carriers otherwise the 
static screening with growing velocity changes to a dyna~nic one with growing effective mass. 

The relaxation rate ro for microscopic distortions of E and cp is fou~ld to be linear in partial 
resistivities (9a) or in conductivities (9b) clepencling on the product of the DW conductivity ancl 
of the normal one wl1ic.h falls just to experimental regions of parameters. 

For an unpi~ined sliding DW we find the driving force E* to be deterniined by the total 
current as E* = Jlu,  rather then by the bias voltage strength Eo which is different from E* 
above ET. This observation suggests that the usual procedure to determine the i~llierent DW 
conductivity must be reconsidered. It explai~ls pheno~nenologically the nlixing of the DW and the 
normal conductivities and the possible I - V instabilities [I]. 
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