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Abstract 
In the KarpluaStrong method, the synthetic sound is obtained by exciting a recursive comb-filter 

with a burst of noise. An analysis scheme is presented in this paper, which makes it possible to derive 
the optimal Karplus-Strong synthesis parameters from the recording of a real instrument. In addition, 
an excitation signal can be calculated and used in place of the usual burst of white or colored noise, in 
order to obtain more realistic syntheses. 

A I n t r o d u c t i o n  

The Karplus-Strong synthesis algorithm [I, 21 offers a number of advantages: it produces realistic harmonic 
or quasi-harmonic synthetic sounds a t  a very low computational cost. The algorithm's simplicity makes its 
real-time implementation quite easy on any digital-signal-processing microprocessor. Finally, as described 
in [2], the synthesis can be controlled through a small number of parameters. The synthetic sound is 
obtained by exciting a resonating filter ( a  recursive comb-filter) with a short noise burst. Although 
the synthesis technique was thoroughly investigated by Smith and Jaffe, the synthesis parameters and 
the excitation signal were usually chosen in an ad-hoc way, without reference to  the analysis of real 
instrumental sounds. The purpose of this paper is to  present an analysis technique corresponding t o  the 
Karplus-Strong synthesis algorithm. Given a real quasi-harmonic sound, we will show that it is possible 
t o  estimate the synthesis parameters as well as the excitation signal that best reproduce the original 
sound. The Karplus/Strong algorithm will be briefly presented in the first part. Then we will turn to  
the estimation of the analysis parameters and of the excitation signal. Before concluding, we will give an 
analysis example. 

B The Karplus-Strong s y n t h e s i s  model 

The Karplus-Strong synthesis model was first presented in [l] then re-worked and improved in [2]. The 
model involves a simple m-delay feedback-loop in which a filter H(z) is inserted, as shown in fig. 1. The 

Figure 1: The Karplus Strong synthesis model 

condition IH(z)I < 1 for any complex z satisfying Irl = 1 is not sufficient for the Karplus-Strong model to  
be stable. However, if filter H ( r )  is stable and satisfies the preceding condition, then the Karplus-Strong 
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model can be shown t o  be stable. 
The eigenfrequencies fk  of the model are determined by the time-lag m and by the phase transfer-function 
of filter H(z). The damping factors a k  of the modes depend on the magnitude transfer-function of filter 
H( t ) .  When filter H(z)  is a frequency-independent real gain, the eigenfrequencies and their damping 
factors can be calculated explicitly. In the general case however, one must use approximate formulas [3]: 

A single eigenfrequency produces a damped sinusoidal output of the form: 

where the initial amplitude Ak and phase cpk depend on the excitation. According t o  eq. (I),  the effect of 
the phase transfer-function of filter H(z)  is t o  modify the length of the feedback loop, and consequently 
the values of the eigenfrequencies. The magnitude transfer-function controls the amount of feedback a t  
the various frequencies and in particular the damping factors of the eigenfrequencies. 
When filter H(z)  is a frequency-independent real gain, the eigenfrequencies are harmonics of a fundamental 
frequency given by fi = l l m .  As a consequence, only sounds whose pitch divides the sampling rate  can 
be synthesized that way. In the general case however, one needs to  synthesize sounds with arbitrary 
pitches. To achieve this, one can use eq. (1) t o  set the phase transfer-function of filter H(z)  so that  the 
fundamental frequency becomes arbitrary. Jaffe and Smith showed that a simple first-order all-pass filter 
was sufficient for that purpose. In addition, the phase behavior of filter H(z)  can be used t o  reproduce 
the inharmonicity of real sounds. 
In the following section, we will show that it  is possible t o  analyze a real, quasi-harmonic sound to derive 
the Karplus-Strong model that best reproduces the original sound. 

C D e t e r m i n i n g  t h e  K a r p l u s - S t r o n g  m o d e l  f o r  a g i v e n  s o u n d  

In this section, we want t o  reproduce an original quasi-harmonic sound using the Karplus-Strong synthesis 
algorithm. The parameters t o  determine are the integer delay m and the filter H(z). When this is done, 
the excitation signal can be extracted by use of inverse filtering. 

1 Determin ing  t h e  de lay  m a n d  t h e  filter H(z)  

It  is first necessary to  estimate the frequencies and the damping factors of the sinusoids composing the 
original sound. This can be done by use of the technique described in [4]: a cumulated time-varying 
spectrum is calculated, then a peak extraction step yields estimated values of the frequencies fk. The 
damping factors a k  are calculated by linear-regression on a dB scale. If the original sound has a strong 
perceptual pitch (e.g. guitars, pianos, etc ...) the frequencies form a near-harmonic series in which fk is 
the kth harmonic. The delay parameter m can be set to: 

k 
m = floor(min -) with fi < f2 < ... < fL 

k f k  
(2) 

in which Aoor(z) represents the closest integer below z, and L is the number of detected harmonics. With 
a constant filter H(z) and the value of parameter m defined above, a Karplus-Strong model would produce 
a harmonic sound with fundamental l l m .  We now use eq. (1) t o  fine-tune each harmonic frequency: the 
phase transfer-function of filter H(z)  is defined a t  L different frequencies fk by the equations: 

Arg(H(zk)) = 2n (m. fk - k) where zk = e2'"jk and k €  [l L] (3) 

Note that with our choice of m, fklk < l l m  for each k, and Arg(H(zk)) is negative. This property will 
be seen t o  make the estimation of filter H(z) easier. The damping factor of each harmonic is adjusted 
according to eq. (1): 

log I H (zk) 1 = mak - 
k ' ~ g ( H ( ~ k ) )  = m a k  - (m - -) 

2 ~ f k  f k  



The two equations (3) and (4) define filter H(z)  a t  L different points on the unit circle, in both modulus 
and phase. Our problem is now t o  find a stable filter H(z) that satisfies those two equations. 

A standard form for filter H(z)  is H(z)  = B(z)/A(z). Smith, in [5], proposes a number of techniques 
t o  determine B(z) and A(z) from the values of Arg(H(zk)) and IH(zk)l. Two of these techniques will be 
discussed here: the equation-error method and the Hankel-norm approximation. 

1. The equation-error method is based on the resolution of a set of linear equations and therefore is 
quite easy to  implement. Furthermore, if nA + ne + 1 2 L and nA and ns are the degrees of 
polynomials A(z) and B(z), the values a t  the frequencies fk of the magnitude and of the phase 
of filter H ( z )  are exactly those specified by eqs. (3) and (4). The drawback of the equation-error 
method is that the filter H(z)  is not guaranteed to be stable. With our choice of the delay m (eq. 2), 
the filters obtained in practice are often unstable. To reduce the extent of the problem, it  is possible 
to  choose a smaller value of the delay m. This operation does not guarantee that the new filter will 
be stable, but the "likelihoodn of obtaining an unstable filter is reduced [5]. 

2. The Hankel-norm approximation involves the eigenvalue decomposition of a Hankel matrix and 
makes use of the Prony algorithm t o  obtain the coefficients of filters A(z) and B(z). Unlike the 
equation-error method, the Hankel-norm approximation always yields a stable filter. On the other 
hand, the values a t  the frequencies fk of the magnitude and of the phase of filter H(z) are not 
necessarily exactly those specified by eqs. (3) and (4). See [5] for more details about the Hankel- 
norm approximation. 

In our problem, we impose another constraint: IH(z)l < 1 Vz, lzl = 1. This constraint cannot be 
incorporated easily into the calculation of H(z)  by either the equation-error method or the Hankel-norm 
approximation, and we will have t o  make sure that the filter we obtain is indeed of modulus less than 
1 on the unit-circle. Interpolating the magnitude transfer-function between the points specified by the 
harmonic frequencies with intermediate values bounded by 1 actually increases the likelihood to obtain 
a filter satisfying our constraint. Moreover, such an interpolation is necessary when the Hankel-norm 
approximation is used. 
Fig. 2 shows the filter obtained in the case of a guitar sound: the frequencies and damping factors were 
estimated by use of the 3-D cumulated spectrum, as described in [4]. Parameter m was derived from 
formula (2). The filter H(z)  w& specified a t  14 different frequencies by applying eqs. (4) and (3). The 
equation-error method was used t o  calculate the filters B(z) and A(z). The two figures present the 
magnitude transfer-function and the phase transfer-function of the resulting filter B(z)/A(z). It  can be 
seen that the approximation is quite good in the magnitude domain as well as in the phase domain. 
Moreover, the magnitude of H(z)  evaluated on the unit-circle does not exceed 1, and the corresponding 
Karplus-Strong model is stable. 

Figure 2: Left: The magnitude transfer-function of filter H ( z )  is plotted in solid line; the crosses represent the 
values specified by the analysis of the original guitar sound. Right: Same results for the phase transfer-function of 
filter H ( z ) .  
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2 Calculat ing t h e  exci tat ion signal 

The Karplus-Strong synthesis model is usually excited with a burst of noise. Jaffe and Smith in [2] discuss 
various choices of the excitation noise. We propose t o  derive the excitation signal from the analysis of 
a real sound, as was done for the filter parameters. Following [4], once the Karplus-Strong model has 
been calculated, we can inverse-filter the original sound t o  obtain the excitation signal. Since filter H(z)  
is modeled by a rational transfer function B(z)/A(z), the overall Karplus-Strong filter, corresponding to 
fig. 1 and its inverse filter can be re-written the following way: 

K(z)  = 
1 

where H(z)  = - 
1 - z-rn H (2) 

A(z) and K-'(2) = 1 - z - ~  H(z)  
B(z) 

According to equ. (5), the stability of filter K-'(2) stems from the stability of H(z). Consequently, the 
methods discussed in [4j can be applied t o  our problem. However, depending on filter H(z ) ,  regularizing 
can be necessary [6] in order to  retain only the pertinent information in the excitation signal. If the 
resonating part of the original sounds is nearly sinusoidal and if the Karplus-Strong model includes all 
the original frequencies, the excitation signal is generally of short duration. This turns out to  be the case 
for a wide variety of instruments, including the guitar, the piano, the harpsichord ... These instruments 
can therefore be synthesized by using the Karplus-Strong model in conjunction with a proper excitation 
signal. 

D Conclusions 

The methods presented in this paper for the determination of the Karplus-Strong parameters make it 
possible t o  synthesize realistic instrumental sounds a t  a small computation/storage cost. Although the 
calculation of filter H(z) still presents some difficulty, (e.g. the constraint ]H(z)l < 1 Vz,lzl = 1)  the 
simulation results are quite satisfactory for a wide variety of sounds. An interesting application could 
be the synthesis of high-quality piano sounds by means of the Karplus-Strong algorithm, an attractive 
alternative to  the classical sampling/filtering methods. 
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