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The phenomena of scattering of light and sound from opaque rough (random or 
otherwise) surfaces have attracted much attention recently due to renewed 
interest in the enhanced backscattering effect (EBE) observed with random rough 
surfaces C1.23. It is now generally recognized that the high-sloped nature of 
the surfaces employed in the experiments in which EBE was observed signifies 
that multiple scattering accounts for most, if not the totality of the 
back-scattered radiation peak. Physical acoustics (also known as the Kirchhoff, 
tangent plane. Brekhovskikh or Beckmann approximation) cannot be used to explain 
the EBE since it accounts only for single scattering. Perturbation methods. 
which seem to account for multiple scattering, can only be used when the 
characteristic dimensions of each scattering feature are small compared to the 
wavelength, which is not usually the case of the surfaces employed in the EBE 
experiments. 

We generalize the physical optics method to include multiple scattering. 
The scattering surface, assumed to be hard and two-dimensional (i.e., it does 
not depend on one of the cartesian coordinates) is a connected system of 
inclined or horizontal strips. The basic scattering feature is the groove (of 
right-triangular shape) and the field within each groove is assumed to be 
insensitive to the existence or inexistence of neighboring grooves. Within a 
given groove the field on each strip is calculated by taking into account, by 
means of a (geometrical acoustics) ray analysis, all the incident (primary wave 
plus the waves reflected from the adjacent strip) and reflected waves. The 
surface fields in the grooves are then introduced into a special form (which 
does not; require knowledge of the surface fields on the horizontal strips 
between the grooves) of the Kirchhoff-Helmholtz. integral to compute the field at 
other-than-surface observation points, notably at infinity (far-field). 

The validity of this geometrical acoustics multiple scattering 
approximation (GA) is established by comparison with (exact) reference solutions 
obtained by a mode-matching method. Both the near and far-field predictions of 
the GA are shown to compare well with the corresponding reference solutions for 
characteristic dimensions of individual scattering features as small as X/3. The 
GA solutions are all the more valid the higher is the frequency. 

Examples, obtained with the GA, are given of the far field response of 
deterministic surfaces and compared to that of random surfaces in connection 
with the enhanced backscattering effect. 
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Consider the problem of a compressional plane wave incident on a hard rough 
(in the mean plane) surface. Assume: 1) the roughness to be two-dimensional and 
describable by the generating function Si: z=f (x) ;S, with #(x) piecewise 
continuous, 2) the wavevector ki of the incident wave to lie in the x-z plane, 
3) the region z<f(x) to be impenetrable. Let u, and u be the incident and total 
pressures in z>f(x); both are functions of x=(x.z) only (assuming an implicit 
time-dependence exp(-iot), with o the angular frequency), i-e., the problem is 
two-dimensional. Let R, designate the half-plane {z>0; xBR) and $2' the remainder 
of the domain {z>f(x);xBR}. R' is composed of N non-connected subdomains R 
j€N, with K {I .  2. . . . .N} which are termed 'grooves". The number of grooves of tb; 
rough surface is N. The junction of R, with R is designated by Jj and the 
right- and left-hand x-coordinates of this segment by cc and pj respectively. 
Both R, and R' are filled with an ideal fluid whose equilibrium mass density is 
p and whose adiabatic compressibility is K. The speed of sound and wavenumber 
in this fluid are c ,= (Kp , ) -'I2 and k, =o/co respectively. The pressure u(x) 
satisfies the Helmholtz equation, the boundary condition of the vanishing of the 
normal deriviative of u on Si and the Sommerfeld radiation condition. 

A special form of the Kirchhoff-Helmholtz integral can be expressed by: 

where 

u, (x)=expCi(kixx - k, zz)] ; kix=k0sin(8, ) , kiZ=kocos(9, ), O,=incident angle (2a) 

u ,, u, and the integral in Eq.(l) are the incident, reflected and scattered 
pressures; the third vanishes in the absence of roughness. Conservation of 
energy is expressed by 

where the left- and right hand sides represent the scattering and extinction 
cross sections respectively, 8 the scattering angle (see figures), 3B(8)=B(kW)= 
B(kosinO) ; lkx IQ,, and IB(0) l2 the bistatic cross section. 

Let w be the width of Ji and Oj the local origin of R with coordinates 
(aj. 0) with respect to the origrn 0. dj (=0 for j=l) is the distance (along the 
x-axis) of the center line of Rj with respect to 0 and 3ij: zd=fj(xj) is the form 
that 9 takes in the j-th groove in terms of the local coordinates. Eq.(3b) then 
becomes : 



It was shown in Ref.3 that the N ( >l)-groove response (i.e., u on the 
surface of a representative groove) closely follows the one-groove response, 
especially at high frequencies. It is therefore not unreasonable to assume that 
AJ (k, ) rr 3 (k, ) , with 3 (kx ) the complex scattering function of the 
corresponding single-groove configuration. The evaluation of u(x J,fJ) can be 
done in an exact manner, as in Ref.3, or an approximation can be made of this 
function. Since we are assuming the frequency to be rather high, we rely on 
geometric acoustics (GA). and to make things as simple as possible, assume that: 
a) the (cross section) shapes of the grooves are all that of right triangles, b) 
18 , 1<45' so as to obviate shadowing. It is then easy to show that two plane 
waves (one incident, one reflected) come into play on one portion of one wall of 
the representative groove surface, and four plane waves (two incident, one of 
which is the result of reflection from the adjacent wall, and two reflected) 
come into play on the remaining portion of the wall as well as on the totality 
of the adjacent wall, so that 

wherein M, =2, M ,=M =4. The coefficients ax, and qtrn have simple closed-form 
expressions. The find step is to insert Eq. (6) into Eq(5a) and to insert the 
latter into Eq.(3a) to obtain the scattering function of the assembly of 
grooves. 

How good is the GA for an isolated groove? Fig.1 provides an eloquent 
response to this question as concerns the surface field and Fig.2 as concerns 
the bistatic scattering cross-section. In both of these figures, the so-called 
exact results have been computed in the manner outlined in Ref.3. 

We employed the GA to determine the far-field acoustic response of surfaces 
with random roughness. Fig. 3 applies to one realization of a rough surface 
consisting of an assembly of eight contiguous grooves whose widths are randomly 
distributed. As in Fig. 2, B, . B , and F indicate the directions of expected 
(from GA) single-bounce backscattering, double-bounce retroreflection and 
single-bounce forward reflection respectively. The finite width and multiplicity 
of the peaks are the result of the combined effects of diffraction, 
interference and the irregular nature of the surface affecting the incident 
wave. For more irregular surfaces (e.g., grooves not necessarily of the same 
shape), the angular distribution of scattered energy is much more erratic 
(speckle) and it is usually impossible to distinguish groups of peaks near B,, 
B , and F that rise notably above the background. However, averaging over many 
realizations enables a peak of type B , to make its appearance; this is the 
enhanced backscattering effect. It is expected that this effect will be 
particularly strong in the present example due to the fact that pronounced 
backscattering of type B, is already observed for a single realization. 
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Fig.2 Bistatic cross section 

for a single-groove configuration. 

Fig.1 Total surface pressure versus x 

in a single-groove configuration. 

Fig.3 GA bistatic cross section for one realization of a randomly rough 
surf ace. 


