OPTIMIZATION AND DYNAMICS OF 2μm Tm-AND Ho-LASERS
T. Becker, G. Huber

To cite this version:
T. Becker, G. Huber. OPTIMIZATION AND DYNAMICS OF 2μm Tm-AND Ho-LASERS. Journal de Physique IV Colloque, 1991, 01 (C7), pp.C7-353-C7-356. 10.1051/jp4:1991793. jpa-00251036

HAL Id: jpa-00251036
https://hal.archives-ouvertes.fr/jpa-00251036
Submitted on 1 Jan 1991

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
OPTIMIZATION AND DYNAMICS OF 2μm Tm-AND Ho-LASERS

T. BECKER and G. HUBER
Institut für Angewandte Physik, Universität Hamburg, Jungiusstr. 11, D-2000 Hamburg 36, Germany

Abstract
We have grown several Cr,Tm:YAG and Cr,Tm,Ho:YAG crystals in order to optimize the dopant concentrations. We observed slope efficiencies of 1.8% for Cr,Tm:YAG and 4% for Cr,Tm,Ho:YAG. Output energies >3 Joules were measured for both crystals. The dynamical behaviour of Tm- and Ho-lasers is very different and is explained by a simple model. The influence of the dynamics on the Q-switch performance of Cr,Tm:YAG and Cr,Tm,Ho:YAG is analyzed.

Introduction
Cr,Tm:YAG and Cr,Tm,Ho:YAG are known as efficient laser materials in the near IR with wavelengths of 2013nm and 2123nm, respectively. [1-6]. Due to the strong absorption of biological tissue at these wavelengths, Ho- and Tm-lasers are interesting for eye-safe measurements and medical applications. The aim of this work is to optimize the dopant concentrations for both 2μm–lasers and to analyze the different dynamical behaviour.

Fig. 1: Pumping scheme of Cr,Tm:YAG and Cr,Tm,Ho:YAG

Experimental Setup
All flashlamp pumped laser experiments were carried out in a nearly hemispherical resonator consisting of a 1m concave high reflector and a plane output coupler. The rods were mounted inside a silver elliptical reflector with a spacing of 10mm between the rod and the cerium doped 3mm–bore–diameter flashlamp. Because the rods are shorter than the arc, all input energies were corrected with the corresponding length ratios. The repetition rate was 1Hz and the cooling water temperature was 20°C. The pump pulse duration \(\tau_p \) was varied between 200 and 1200μsec with output mirror transmission \(T \) between 5% and 65%.
Cr,Tm:YAG
In order to optimize the Cr- and Tm-concentrations in Cr,Tm:YAG we have grown several crystals with different concentrations of Cr (0.7%–3%) and Tm (3%–9%) and investigated the flashlamp pumped laser performance.

Fig. 2: Optimization of Cr-concentration for Cr(x%),Tm(5%):YAG. The insert shows a flashlamp pulse and a typical Cr,Tm:YAG output pulse.

At a fixed Tm-concentration of 5% the Cr-concentration for laser rods with 5mm diameter can be chosen between 1.3% and 3% without a drastic change in the laser performance (see figure 2). For laser rods with 3mm diameter we obtained the best results with Cr-concentrations between 2% and 3%.

Fig. 3: Optimization of Tm-concentration for Cr,Tm:YAG
The best Tm-concentration was determined to be between 5% and 7% (see Figure 3). At lower Tm-concentrations the Cr-Tm-energy transfer and the Tm-Tm-cross relaxation are less efficient. At 9% Tm-concentration the threshold energy increases due to the reabsorption losses, but the slope efficiency remains nearly unchanged. The maximum slope efficiency of 1.8% was obtained with a Cr(2%):Tm(7%):YAG at 28% output coupler transmission and a pumping pulse duration of 800µs. The maximum output energy was >3J at 280J input energy.

Cr,Tm,Ho:YAG

We varied the Tm-concentration between 3% and 14% at fixed Cr- and Ho-concentrations of 2% and 0.36%, respectively (see figure 4). Slope efficiencies of 4% and output energies >4 Joule were obtained with a Tm-doping of 6%.

![Graph showing optimization of Tm-concentration for Cr(2%), Tm(x%), Ho(0.36%): YAG.](image)

Fig. 4: Optimization of Tm-concentration for Cr(2%), Tm(x%), Ho(0.36%): YAG. The insert shows a flashlamp pulse and a typical Cr,Tm,Ho:YAG output pulse.

The laser performance of the rods with 14% Tm doping is not as good as the performance of 6% Tm rods. This is caused by the fast energy migration in the Tm 3H_4 level and nonradiative energy transfer to impurities. For the same reason the Tm-lifetime of the upper laser level decreases with increasing Tm-doping. The importance of the sensitizer Cr is shown in figure 4. Without Cr the threshold energy increases from 27J to 125J and the slope efficiency decreases drastically from 4% to 0.07%.

Dynamical Behaviour

Independent of the doping a Tm-laser is emitting a train of irregular spikes as it is typical for low-gain-lasers with long lifetime of the upper laser level. Depending on the doping a Cr,Tm,Ho:YAG laser is emitting a more or less smooth output pulse. The higher the Tm-concentration the smoother is the output pulse of the Ho-laser (see figures 4 and 5).

The behaviour can be explained by a simple model, which is described by three equations.

\[
\begin{align*}
\frac{dN_T}{dt} &= -W - N_T/T_{TH} + N_H/T_{HT} - N_T/T_T \\
\frac{dN_H}{dt} &= +N_T/T_{TH} - N_H/T_{HT} - N_H/T_H - N_H \cdot N_p \cdot g \\
\frac{dN_p}{dt} &= +N_H \cdot N_p \cdot g - N_p/T_R
\end{align*}
\]
\(N_T, N_H = \) Number of excited Tm- and Ho-ions, \(N_p = \) Number of Photons, \(W = \) Pumping rate,
\(\tau_{TH}, \tau_{HT} = \) Transfer times between Ho and Tm ions, \(\tau_T, \tau_H = \) Tm and Ho-lifetime, \(g = \) Coefficient for gain, \(\tau_R = \) Lifetime of photons in the resonator.

With the overlap integral of the fluorescence — and absorption — spectra we calculated the transfer times to be of the order of \(\mu s \). With this transfer rates Tm is strongly damping the Ho-inversion and consequently the photon number oscillations, too. Faster interaction times cause both the Tm- and Ho-inversion to oscillate and slower interaction times cause the Ho-inversion to oscillate independent of Tm.

Q-Switch Properties

For the Q-switch experiments we placed an AR-coated LiNbO\(_3\)-crystal and a brewster-quartz-plate between the laser rod and the HR-mirror. The output mirror had transmission of 65\% at 2\(\mu \)m and the pump pulse length was 650\(\mu \)s. The Q-switched Tm-laser produces a pulse with a FWHM of 30–40\(\mu \)sec and a maximum output energy of 50mJ (see figure 5). If the output energy exceeds 15–20mJ the LiNbO\(_3\)-crystal sometimes shows starting degradation due to surface and bulk damage.

![Q-Switch Pulse](image)

Fig. 5: Q-switch properties of Cr(3%), Tm(5%): YAG

The Q-switched Ho-laser produces a train of up to 15 pulses within a time period of 200\(\mu \)sec after the Pockels cell is switched off. The first pulse has a FWHM of 30–40\(\mu \)sec which increases for following pulses up to 200\(\mu \)sec. The total output energy is about 150mJ. This behaviour is caused by the fact that approximately 50\% of the excitation energy remains stored in the Tm-inversion after the first Q-switch-pulse has removed the Ho-inversion. This stored energy can be transferred to the Ho-ions producing additional pulses.

References