GROWTH OF β BaB2O4 SINGLE CRYSTALS AND
SHG EFFICIENCY MEASUREMENTS

B. Ferrand, Isabelle Chartier, C. Coatantiec, M. Couchaud, G. Rolland, Ch. Wyon, J. Aubert, D. Doizi

To cite this version:

HAL Id: jpa-00250883
https://hal.archives-ouvertes.fr/jpa-00250883
Submitted on 1 Jan 1991

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GROWTH OF β BaB$_2$O$_4$ SINGLE CRYSTALS AND SHG EFFICIENCY MEASUREMENTS

B. FERRAND, I. CHARTIER, C. COATANTIEC, M. COUCHAUD, G. ROLLAND, Ch. WYON, J.J. AUBERT and D. DOIZI*

CEA, DTA/LETI/D.OPT, CENG, 85 X, F-38041 Grenoble cedex, France
*DPE-SOL, CEN-SACLAY, F-91191 Gif sur Yvette cedex, France

Abstract: We report here the growth and characterization of non linear single crystals β BaB$_2$O$_4$ (BBO) which is an interesting material for second harmonic generation. Single crystals were grown from Na$_2$O-B$_2$O$_3$ solutions using the top seeded solution growth method. The experimental set up included a Nd:YAG, Q switched, focalised with a cylindrical lens on the samples. Efficiency up to 40 % were obtained using 6 mm long crystal.

1. - Introduction

β BaB$_2$O$_4$ (BBO) is an interesting material for second harmonic generation (SHG) (1). It exhibits high damage threshold and a wide transparency range (2). BaB$_2$O$_4$ is known to exist in two phases: a high temperature α phase and a low temperature β phase with a transition temperature of about 925 °C (3). α BaB$_2$O$_4$ melts congruently at 1096 °C but the growth of β phase requires a growth temperature below 925 °C in a solvent. The real success in growing β BaB$_2$O$_4$ came with discovery of a suitable solvent. The workers of Fujian Institute have studied all of the practical solvent for this material: BaCl$_2$, BaF$_2$, Li$_2$O, NaBO$_2$, and Na$_2$O (4). They reported that Na$_2$O yields the best results in terms of crystal size and defect density.

2. - Crystal growth procedure

2.1 - Preparation of charges

Several melt compositions were investigated in the system BBO-Na$_2$O-B$_2$O$_3$. In order to obtain the desired low temperature β phase, growth must be carried out from solution below 925 °C. With Na$_2$O-B$_2$O$_3$ as solvent, we find that β BaB$_2$O$_4$ can be crystallized at about 900 °C from solutions with typical composition of 80 % mole BBO - 16 % mole Na$_2$O - 4 % mole B$_2$O$_3$. Charges were weighed out and fractional amounts were placed in pure platinum crucible to be melted in a synthesis furnace at 1025 °C.

2.2 - Top seeded solution growth apparatus

High thermal gradient furnace was used in order to initiate a good growth from the seeds and to minimize the defects density in the crystals. At the melt surface the axial temperature gradient was about 50 °C/cm. BBO seeds were held rigidly using a platinum holder. Before seeding the melt was heated at about 1000 °C during several hours.
2.3 - Growth conditions

Crystal growth experiments were performed with the use of seeds oriented along the y-axis. BBO seeds having a rotation rate of 10-25 rpm were introduced carefully in the melt in order to avoid nucleation, at about 900°C to minimize solution viscosities. Typically we used a cooling rate of 0.025°C/hour and a pulling rate of 1 mm/day.

3. - Results

BBO crystals boules of 40 mm in diameter and 10 mm in thickness were grown. The crystals had tendency to fracture along the basal plane during cooling. Most crystals grown presented internal defects, typically: solvent inclusions, fractures and cleavages.

4. - Characterization

After growth, crystals were characterized by optical microscopy in order to localise the defects. Following these observations, we prepared single parallelepipedic crystals (5 x 5 x 8 mm3) of good optical quality, to make the SHG efficiency measurements. Two plane and parallele faces were then oriented and polished. Two orientations were studied: one perpendicular to the optical axis and one at 22°8 of this axis corresponding with the type I phase matching for SHG at $\lambda = 1064$ nm.

The spectral transparency range was measured using a spectrophotometer and found to spread from 200 nm to 2500 nm (at a level of 1/2) (figure 1).

![FIG. 1 - Transmission of β BaB2O4 crystal](image-url)
5. - Second harmonic generation experiments

5.1 - Crystal orientation

The low temperature phase for baryum metaborate can be indexed with a monoclinique cell where
\(a = 11.133 \text{ Å} \), \(b = 12.67 \text{ Å} \), \(c = 8.381 \text{ Å} \) and \(\beta = 100.03^\circ \) (5). In this representation, the phase
matching direction for the second harmonic generation (22°8 from the optical axis) is not
perpendicular to a common crystallographic plane (6). So the problem consisted to determine this
SHG plane. Thus, we found two crystallographic planes, (010) and (201), which are both
perpendicular to the SHG plane. The orientation was realized with the Laue method. Only one
pattern was required, with the software "Orient Express" to locate accurately the crystallographic
planes (7). When these two (010) and (201) orientations are located, we cut and polish,
perpendicular to them, two parallel faces.

5.2 - Results

The SHG measurements were made using as the fundamental beam source a Q-Switched Nd:YAG
having the following properties :

- \(\lambda = 1.064 \mu \text{m} \)
- \(\nu = 1 \text{ KHz} \)
- \(\tau = 17 \text{ ns} \)
- \(E_{\text{pulse}} = 50 \text{ mJ linearly polarized around 80 \%} \) (so the useful energy was 40 mJ)
- beam quality = 3 times the diffraction limit

The beam was focused using a cylindrical lens and its size in the BBO crystal was (FWHM) : 290 x
4 \(\mu \text{m}^2 \) leading to a power density (FWHM) of 0.27 GW/cm². With this experimental set up and using
a 6 mm long BBO crystal in the type I phase matching configuration, an energy of 17 mJ was
generated at \(\lambda = 532 \text{ nm} \) which gives a conversion efficiency of 40 \%.

6. - Conclusion

Single crystals of \(\beta \) BaB\(_2\)O\(_4\) have been grown from Na\(_2\)O-B\(_2\)O\(_3\) solutions. High thermal gradient
furnace was used. Crystals grown from "\(y \)" oriented seed had tendency to fracture along the basal
plane and to contain some optical defects. Parallelepipedic samples (5 x 5 x 8 mm) have been
prepared and tested for second harmonic generation efficiency. Values up to 40 \% were obtained.
Crystal growth with "\(x \)" oriented seeds are presently in progress.
7. - Acknowledgements

The authors are indebted to all the people of the dielectric material and laser groupe of D.OPT for their contribution in the growth and characterization of the BBO crystals. They would like also to thank J.P VASSALI and B. FRANCOIS for the preparation of samples and F. LAUGIER for RX orientation.

8. - References

(1) - Q. HUANG, J. LIANG

(2) - C.T CHEN, B. WU, G. YOU, Y. HUANG

(3) - E.M LEVIN, H.F.Mc MURDIE

(4) - A.D JIANG, F. CHENG, Q. LIN, Z.S CHENG, Y. ZHENG

(5) - K.H HUBNER

(6) - K.KATO

(7) - "Orient Express"
Software Copyright ILL-CEA distributed by CYBERSTAR SA