DECAY AND FORMATION RATES OF Xe* (3P1, 3P2) AND Xe2* [MATH] FOR Ar-Xe HIGH PRESSURE LASER MIXTURES

N. Sazhina, N. Ustinovsky, I. Kholin

To cite this version:
N. Sazhina, N. Ustinovsky, I. Kholin. DECAY AND FORMATION RATES OF Xe* (3P1, 3P2) AND Xe2* [MATH] FOR Ar-Xe HIGH PRESSURE LASER MIXTURES. Journal de Physique IV Colloque, 1991, 01 (C7), pp.C7-593-C7-593. <10.1051/jp4:19917160>. <jpa-00250837>

HAL Id: jpa-00250837
https://hal.archives-ouvertes.fr/jpa-00250837

Submitted on 1 Jan 1991

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
DECAY AND FORMATION RATES OF Xe* (3P₁, 3P₂) AND Xe*₂ (3 Σ⁺_u) FOR Ar-Xe HIGH PRESSURE LASER MIXTURES

N.N. SAZHINA, N.N. USTINOVSKY and I.V. KHOLIN
P.N. Lebedev Physical Institute, Leninsky Prospect 53, Moscow 117924, USSR

We used time resolved absorption measurements to investigate the decay and formation rates of the Xe* (3P₁, 3P₂) and Xe*₂ (3 Σ⁺_u) states in Ar-Xe high pressure laser mixtures (0.5-3 atm) with low Xe fractions 10⁻²-10⁻⁵. As an excitation source electron beam with II-shaped pulses was used. From analyses of the dependence of the afterglow decay rates upon Xe and Ar partial concentrations we have obtained the effective rate constants for two- and three-body quenching collisions Xe* (3P₁, 3P₂) with neutral particles. Two-body collisional deexcitation of the Xe* (3P₁) and Xe* (3P₂) by Ar is observed with the rate constants (9±3)·10⁻¹⁵ and (2.5±0.8)·10⁻¹⁵ cm³s⁻¹. For the three-body reactions

\[
\text{Xe}^* (3P_1) + \text{Xe} + \text{Ar} \rightarrow \text{Xe}^* (1Σ^+_u) + \text{Ar}
\]

\[
\text{Xe}^* (3P_2) + \text{Xe} + \text{Ar} \rightarrow \text{Xe}^* (3Σ^+_u) + \text{Ar}
\]

we have obtained rate constants (2.8±0.9)·10⁻³² and (1.8±0.6)·10⁻³² cm⁶s⁻¹. Most authors /1/ suppose that at the low Xe concentration second order reaction

\[
\text{Xe}^* + 2\text{Ar} \rightarrow \text{ArXe}^* + \text{Ar}
\]

would be the main quenching process. In our experiments, performed in the wide range of experimental conditions, we haven't noticed any decay rate components, proportional to the [Ar]². Also it is shown that the reaction discussed combined with the reverse one

\[
\text{ArXe}^* + \text{Ar} \rightarrow \text{Xe}^* + 2\text{Ar},
\]

the role of which is high enough due to the small binding energy of ArXe*, can produce the definite part to the components, which are linear against [Ar].