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Abstract 

The addition of metal to a metal-ammonia solution already in the metallic regime can 

lead to a further reduction in density. This experimental observation can be accounted for 

by a straightforward evaluation of the dominant volume-dependent and one-body terms 

contributing to  the thermodynamic functions of the metallic state. Augmenting these 

terms are smaller two-body terms which are important in a structural sense. Because of the 

exceptionally low electron-densities found in metal-ammonia solutions, it is proposed that 

these can be significantly changed, in a state-dependent fashion, by inclusion of fluctuation 

effects. 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1991521

http://www.edpsciences.org
http://dx.doi.org/10.1051/jp4:1991521


JOURNAL DE PHYSIQUE IV 

I. Introduction 

Among the elements, electron-densities in the metals are often characterized by the 

linear measure r, defined for a volume 0 containing N electrons by % r3a: = [ 8 ~ n d r  < 

b!')(r) >] = f l / N  where b l 1 ) ( i )  is the one-electron density operator, and < bL1)(r) > 

its statistical average over the state of the metal in question. Typical values of r, for the 

metallic elements then lie in the range 0 5 2 5 6 the higher values being found for instance 

in Cs. The r, range can be extended somewhat by alloying, by compound formation, 

or even by taking metals to extreme conditions of temperature. But some of the highest 

values of r, in systems under relatively normal conditions are to be found in the metal- 

ammonia solutions. By way of example, the saturated metallic solution of lithium in 

ammonia (Li(NH3)4) ,  the lightest of all known non-cryogenic liquids,' has an r, value 

of 7.43. By systematic reduction of metallic component the system eventually passes into 

an insulating fluid state, and metal-insulator transition takes place en route; prior to this 

transition, the r, value has increased still further. 

In terms of mean electron densities, these systems are to be considered as extremely 

dilute. It is interesting that they form at all. From the physical point of view the reason 

seems to be the following: take a metal atom (say Li) in isolation - its valence electron is 

bound in a pseudopotential, which is attractive and Coulombic at  long range (Fig. la) .  But 

a single electron can also be strongly attracted to an isolated ammonia molecule, the reason 

for this being immediately attributable to the remarkably large value of its polarizability2 

(aA  = 15.  27 a:) which leads to a law of polarization attraction (- - ( r ~ e ~ / r ~ ,  Fig. l (b))  

also at  long range. Thus in a mixture of metal atoms and ammonia molecules it can be 

energetically favorable for the electron to depart the attractive field of the metal ion, to 

take advantage of polarization attraction of the ammonia molecules, and to be stabilized 

in part by the ensuing electrostatic (Madelung) energy. 

In addition to its role in recording average electron density, the parameter r, also has 



a well understood meaning in terms of the relative importance to be attached to average 

kinetic energy (proportional to 1/rz) and to Coulomb interactions (proportional to llr,). 

On general grounds it is to be expected that the role of fluctuations in the electron system, 

either of classical or quanta1 origin, must rise as average electron density declines. It is for 

this reason that the metal ammonia solutions may in a real sense be almost ideal systems 

for the study of the 'simple' low density electron fluid. By 'simple' is meant a system 

where the electrons originate with s- or p-states;2 in particular, it will be argued below 

that the fluctuational characteristics of the dilute electron fluid, and most especially their 

manifestation in screening, can lead to power law rather than Thomas-Fermi (or Friedel 

oscillatory) types of behavior. The forms of such interactions (but not necessarily their 

magnitudes) are then essentially invariant across the metal-insulator transition. 

11. Characteristics of the Metallic State 

At the temperatures of interest for metal ammonia solutions in the metallic phase, it 

seems generally agreed that one of the important dynamical units, from the standpoint of 

subsequent statistical description, is an ion (Lif) relatively strongly bound to m (m = 4, 

apparently) ammonia molecules, each molecule situated with its dipole moment directed 

outward from the ion. If c is the concentration of metal, then the concentration of molecules 

not belonging to such units in c~ = (1 - (m + l )c ) / ( l  - mc) (which is clearly zero at - 

saturation). Thus, in this limited range of the phase diagram the picture is of a metallic 

fluid composed N complexes in a volume R. EN are 'free' ammonia molecules; cN are 

ammonia molecules bound to metallic ions, and hence carrying an overall charge. This is 

compensated by cN electrons, in volume R, in itinerant states. It follows that 

Apart from internal binding energies, an approximate3 Hamiltonian for this system at the 

level of pair interactions is 



C 5 - 1 7 2  JOURNAL DE PHYSIQUE IV 

N. 
where a! is the species label (a = e, M, A ) .  Thus f e  = ( - h 2 / 2 m e ) v ~  is the aggregate of 

i= 1 

electronic kinetic energies, and so on. In (1) v,,t is an interspecies potential (for example 

VAA is the ammonia-ammonia interaction, V,M is the interaction between an electron and 

solvated ion, etc.). Finally $22 is the two-particle density operator 

where the one particle densities are defined by 

with N, the number of particles of species a: (for example, Ne = cN). It should be 

emphasized that the interactions v,,~ are not necessarily well known in detail; nevertheless, 

if they are taken as Fourier transformable, then (1) can be rewritten as 

or, since long-range interactions are involved ( v e e , v e ~ , v M ~ )  the q = 0 terms can be 

explicitly excerpted to give 

where a, is proportional to the limit of all q = 0  residue^.^ This form is particularly 

useful in fluid phases since the corresponding statistical averages of < pcA,(q', --) > are 

immediately related to partial structure factors. Given H the route to the thermodynamic 

functions follows as usual from the partition function 

Z = T r  e z p  (-pH) (6) 

where the trace is to be taken over the combined states of H. Invoking adiabatic separation 

of electron e and other (n, and vastly more massive) degrees of freedom, then (6) can be 

rewritten 

= T ~ ,  e - P H . ~ r ( n ; P )  



where 

, - O H ~ I I  (fi,~) = T r , ( , ) e - ~ ~  (7) 

defines an  effective Hamiltonian for the metal-ammonia solution in terms of pair potentials 

and beyond, and which incorporates in a state-dependent fashion the effects of the itinerant 

electrons. If, as stated previously temperatures are held moderate, then the electrons can 

be taken close to their ground state, and it then suffices to take a ground state electronic 

trace 

Heff(fl) =< Ei > o e  (8) 

with electron coordinates appearing explicitly in 3 of the 6 interaction terms of 8. Equa- 

tions (5) and (8) are the basis of the subsequent analysis of the thermodynamic functions 

of the metallic phases of the metal-ammonia systems especially Li(NH3), .  They go some- 

what beyond the earlier models proposed by Schroeder and Thompson.5 

111. Approximate Thermodynamic Functions 

Lacking detailed physical information on 4 of the 6 interactions included in (8), it is not 

possible a t  present to give a complete accounting of the thermodynamic functions of metal 

ammonia solutions. Nevertheless, since electronic and electrostatic energies are dominant, 

it is possible to identify the origin of certain trends in such systems. Treating the solvated 

ions (M) and ammonia molecules (A) classically, and also treating the electrons a t  the level 

of linear response (it will be argued shortly that a t  low densities it is necessary to go beyond 

linear response) we are led to a reasonably acceptable picture based on the proposition 

that  the electronic energy of these systems is a major contributor, overall; the electrostatic 

energy (from the Madelung sums) is also very significant. Because of this it is plausible 

to proceed via perturbation theory by associating with v , ~  and v , ~  a coupling constant 

and utilizing the Pauli theorem. The vanishing of the coupling constant corresponds to a 

physical situation where, with the q = 0 terms treated as above, an  interacting electron 

gas is present in a uniform background. For paramagnetic arrangements this subsystem 
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has an energy per electron (in Ry) 

where aK = 2.21 originates with kinetic energy, a, = 0.916 with exchange, and the residue 

e,(r,) (generally a weak function of density) is the correlation energy.4 

Through the use of standard response procedures the electron trace required in (6) can 

be carried out systematically in orders of the coupling constant. By including just linear 

response in the electron system the procedure leads immediately to one-body energies 

(1) 40 ( r e )  associated with the agglomeration of electron charge around either the ammonia 

molecules (A)  or the metal-ammonia ions ( M ) :  these energies will clearly be proportional to  

the relative concentrations of each component. In addition, (b), it leads to effective state 

dependent (screened) two-body pair interactions ~$C~,(f',r,) (also, in principle functions 

of Euler angles). An example of such an effective interaction for spherically averaged 

L ~ ( N H ~ ) $  "ions" is 

where ~ ( q ,  r,) is the static (state dependent) dielectric function of the interacting electron 

gas. It is shown in Fig. 2 for the case where U , M  is given by an empty-core pseudopotential, 

with core radius fixed by the minimization procedure discussed below. The important 

point is that so far as structural rearrangement at fixed density is concerned it leads to  

energies on the mR scale in some contrast to (8). (As will be seen in a moment, (9) is not 

necessarily small compared with fluctuation effects arising in the agglomerated electron 

charge which was considered in the context of the one-body energies.) The fact that the 

pair terms rise rather steeply at short separation has been used in the past6 to establish a 

variational approach to the evident classical part of the problem namely the determination 

of the free energy of the M and A subsystems. For example, by introducing a binary hard- 

sphere reference system (with diameters OM and aA) the Gibbs-Bogolyubov principle can 



be used6 to obtain a bound or the Helmholtz energy of the entire system, namely 

where Fo is the (entropic) free energy of the underlying hard sphere reference system (in- 

cluding rotational contributions) and Sg,, are the corresponding structure factors (which 

may be taken, for example, from the Percus-Yevick approximation7). In (9) a r , ~  = a r , + c r ~  

where a~ is the Madelung constant for the fluid, a substantial contribution to the energy 

a s  noted; and certainly on the scale of F, {per unit). 

If accurate expressions for the d::, were accessible then at this stage it would be 

permissible to minimize F for fixed, T, 0,  c, and E with respect to the UA and OM, resulting 

in a least upper bound on the free energy. However, such variations are carried out within a 

structural, and not a cohesive context, For the present (again, lacking detailed knowledge 

of the we will focus on the dominant terms, recognizing however that the entropic 

contributions are nevertheless crucial in understanding the fluid-fluid phase separation that 

eventually takes place at lower concentrations. To proceed, consider first the saturated case 

(Li(NH3)*)  where c = 115 E = 0; this will subsequently be diluted (C # 0) by addition of 

ammonia. At saturation the internal energy, up to one body embedding energies is 

where ao(r,)/r,3 is the sum of 4g)(rs) and the q = 0 residue correction to the Madelung 

energy discussed above. Since e,(r,) is a weak function of r,, (11) is minimized at  a value 

of r, determined approximately by 
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But since the minimizing value of r ,  is known from experiment, ( r ,  - 7 . 4 3 )  this establishes 

a, (a, -- 37). The procedure just described (though it clearly omits structural energies and 

can be improved by addition of one-body response) is reasonably successful in accounting 

for the observed equilibrium densities in simple metals and their alloys, and also in wide- 

gap semiconductors. Indeed, if in such systems, electron ion pseudopotentials are described 

by an empty-core form, then the result for a,  is quite simple, namely 

where rc is the corresponding core size. If a similar stratagem is pursued here (say for 

v , ~ ) .  Then the "electronic" core size of L ~ ( N H ~ ) $  consistent with the observed density 

is fixed at  

r ,  -- 3 - 52a,. 

The corresponding size of the side of a tetrahedron (with r ,  as center-to-vertex radius) 

is about 3.1 A .  However, since (?I, contains, by definition the effects of dipolar attraction, 

the corresponding size should be somewt~at larger than this. But in any event, the size is 

reasonably in accord with the value as given by Thompson.' 

The main point is that the basic length scales of this particular metal follow those 

of other simple metals, namely the size of the electronic core is considerably smaller than 

that of the Wigner-Seitz radius; in fact, it is less than half this size. This situation is to 

be contrasted with the molecular fluids where the equivalent ratio of physical lengths is 

around 0 . 7  - 0 . 8 .  

IV. Metallic Dilution 

From the discussion above, it is perhaps in these quintessentially 'metallic' energies 

that we might seek the major effects of adding unattached (or free) ammonia molecules 

to the system, obtaining thereby a less than saturated solution. Let -crA(r,) /rf  be the 

energy per electron, of embedding an anlrnonia molecule in an electron gas, whose average 

density is fixed by r,;  this is essentially 4;). Using the same approximations as introduced 



above, the energy, per electron is no longer given by (11) but is rather 

Mc). (14) 

It follows that for values of c truly conforming to a metallic state the new minimizing value 

of r ,  satisfies 

where 

a,  = aA (1 - ( m  + l ) c ) /c ( l  - mc). 

From this it also follows that the effects of dilution on the mass density p ,  saturation 

can be expressed by 

-d In p T A ~ ~ A  

' so  ( f f e ~ r a o  - f f ~ )  

where r A  = 22512 and the right hand is then a little less, numerically-, than OLA itself. Since 

the latter is, in atomic units, approximately 3 r i  where r~ is the electronic radius of the 

ammonia molecule, it follows that the logarithmic derivative in (16) is quite substantial 

This may be linked, in part to the extremely steep eutectic seen in this system. Note, 

however that the addition of metal leads directly by this argument to an expansion of the 

system, as observed. 

This picture must break down for values of c that are large simply because the 

ammonia-ammonia interactions (and ammonia-complex interactions) in the presence of 

a declining metallic component, tllemselves become important. However, the exercise can 

be repeated for the case of a metallic state close to saturation but with additional 

component. Then a similar argument leads to the result 
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where q = 3rt is determined by the ionic radius of the metal. From (17) and (16), it 

follows that 

and again, this may be reflected in part in the asymmetric form of the eutectic. The 

major point, however, is that either for ammonia rich or metal rich states, the density 

change with appropriate concentration are quite significant. The result expressed by (18) 

though arrived at through consideration of the metal-ammonia system, is not specific to 

such systems. It reflects the presence of two microscopic length scales intrinsic to an 

alloying problem; here the length scales are provided by an ion (Li+) and an ion complex 

(Li(NH8)t). For any reasonably free electron system in which a basic structural complex 

(e.g. P b  K4) retains its integrity as a concentration variable is altered, a result of the form 

of (18) will ensue. 

V. Fluctuations 

It has already been remarked that a standard characteristic of the metallic state in 

the simpler systems is the gross mismatch between the energy scales typical of cohesion, 

and those typifying structural rearrangement. The former is essentially determined by the 

energies included in equations (11) or (14); the latter can be obtained from the response 

argument given above, and indeed is usually advanced in the context of electronically dense 

systems i.e. systems for which r, is small. The whole point of metal-ammonia systems is 

that r,  is far from this regime, and in fact is even far beyond the point (r, - 5.5) where the 

electron gas suffers a compressional instability (strictly speaking where the second volume 

derivative of the ground state energy, in the presence of a s u ~ ~ l i e d  positive background, 

changes sign). A largely classical interpretation of such an occurrence in a canonical 

system would lead to a mild expectation that there might be present among the particles 

efective attractive interactions impelling such a collapse, much as one would infer from 

the observed collapses at vapor-liquid transitions in classical gases. In these systems, the 

origin of such attractions is well understood. It resides with fluctuations in the electronic 



I 

-charge, which in the two component view of an element is present as the result of response 

of the electrons to the nuclear field. In exactly the same way, a simple question can be 

asked about the fluctuational aspects of the electronic charge built up around M and A 

in the process of forming the one-body (&'I) energies. The only difference (but it is a 

rather crucial one) is that the response charge is not bound, though it well localized, as 

one knows from Thomas-Fermi approximation. The question here, for large r, systems, 

is whether higher order response [fluctuations occurring within linear response charge, for 

example) can lead to structural interactions $!a, which are actually more significant than 

the standard terms typified by (9). A simple dimensional argument shows that this is very 

likely; and calculation verifies it.8 Note first that on a time scale short compared with 

the characteristic time of the interacting electron gas (i.e. l/wp, where wp is the plasma 

frequency) the distribution of the electronic charge within the time averaged spherically 

symmetric arrangement around A or M has a full multipole sequence. Selecting, for 

example, the dipoles, the standard London argument leads to the expectation of a -l/r6, 

i.e. power-law, attraction between two such ions, each with their localized screening charge. 

Given this a certain amount of dimensional refinement is now possible since the interaction 

must be constructed from PL, me, r, and e2. The result is 

3 2  6 4 - p  / f ( la )  (19) 

where f(r ,)  is an undetermined factor which must eventually cut off the interaction at 

very low densities where collective excitations cease to be well defined. This equation may 

be compared directly with the standard results for atomically localized charge, namely 

where a! is the static polarizability, and A a characteristic excitation energy of the atom. As 

shown by Langreth and VoskoQ a more detailed calculation of the appropriate fluctuational 

diagram (the first of the 4addern sequence) leads to 

4$'(., 0) - -(hpW,)((.:)2/.6) 100 I. (20) 
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The key feature of (19) or (20) is the rapid growth of this term with declining density, 

a trend which is fully understandable since the effect we are dealing with owes its origin 

entirely to  fluctuation physics, and this is usually constrained at high densities by increasing 

kinetic energies. 

As applied to metal ammonia solutions this picture is rather straightforward. Con- 

sider first the saturated solution. Around each L ~ ( N H ~ ) $  complex is found the expected 

localized complement of static screening charge (the charge whose assembly resulted in 

the one-body energy 42) ) .  Correspondingly, there is established a statically derived pair 

interaction whose form is fixed by (9) or its orientational equivalent. But the suggestion is 

now being made that a further contribution to the pair interaction arises in lower electron 

density systems, such as we find here, whose origin lies with fluctuations in the response 

charge around each "ion". It has been emphasized that this picture appears at first to be 

similar to  the atomic case; however, the presumption is that a metallic state does exist so 

that the response charge is sensitive to an overall macroscopic boundary condition fixed by 

the system volume n. It follows that the fluctuation contribution 4;) must be a function 

of state, and from (20) it would appear that changes in 4;) can develop quite rapidly 

as compared with (9). Though the present analysis is not expected to be valid in the 

critical region, the point can nevertheless be made that the rapidity of variation in the 

pair-interactions will necessarily influence the analysis of the critical regime and possibly 

lead to renormalization of the critical exponents. 

VI Polarization and Electron Pairing 

The presence in a metal of a constituent with significant internal electronic dynam- 

ics (as revealed through a static polarizability a) carries with it microscopic implications 

going beyond energetics and global thermodynamic functions. This can be seen by noting 

that the argument leading to the polarization attraction -2ae2/lGI4 of an electron at 

displacement 6 the from the center of the source of polarization, can also be repeated 

for a second electron, at outside the same center. The pair then have a mutual sep- 



aration r'= PI - F2. The easiest case to consider takes Ifil = IT21, for which the energy 

is e2(l/r - 4a/lr1 I*), and at this level we can already see from the specific arrangement 

where the electrons are diametrically opposed that for separations less than a critical value 

r 5 411/6a1/3 the pair may actually lower their energy by moving closer together. If the 

pair is not diametrically opposed, the critical separation is smaller, and there is an obvious 

limit determined by the exclusionary action of the core itself. Between this limit and the 

critical values we will expect effective attractive interactions. These must then be averaged 

over glJ possible values of lril and IT2[. Exactly this kind of average is encountered in the 

case where the separation 16 - 7'1 is macroscopic, and an assembly of polarizable objects 

is interposed. Then the same physics leads to the familiar net (repulsive) interaction e2/er 

where E is the static dielectric constant. However, on a microscopic scale (e.g. l l k ~ )  

the net interaction is not necessarily repulsive. The tendency for electron pairing on the 

solvated electron side of the metal-insulator transition might be viewed in this light; the 

clear dependence of a suggests that these microscopic pairing tendencies should be even 

more pronounced as the CeO complexes where static polarizabilities - 102A3 are expected. 

And if the polarizable objects are in a crystalline array, then there are added enhance- 

ments from coherency leading, for the metallic side of the transition, to electron pairing 

via polarization waves. This observation leads back to the point made earlier namely that 

in the pursuit of the understanding of dilute itinerant electron systems and especially their 

fluctuational characteristics, the metal-ammonia systems are almost ideal vehicles. 
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Figure 1: Ashcroft 

Fin. 1: (upper panel) Schematic form of the unscreened electron-ion (ei) pseudopotential for 

lithium showing the exclusionary core-orthogoralization region for r/rci < 1. (lower 

panel) Schematic form of the core-polarization attraction (ea) of an electron to a 

neutral ammonia molecule. Again there is an exclusionary region for r/r,, < 1. 

Shown here is a spherically averaged version of the true microscopic interaction. 
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Figure 2:  Ashcroft 

Fin. 2: Static linear response approximation for the screened, spherically averaged L ~ ( N H ~ ) ~  - 

Li(NH3): interaction at two densities, indicated by r ,  = 7 - 47 and r ,  = 8.50. Note 

that the value of r,  = 7 - 47 corresponds to saturation. 


