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SHORT-RANGE ORDER OF LIQUID AND AMORPHOUS TRANSITTON-METAL ALLOYS 

Ch. HAUSLEITNER and J. HAFNER 
Znstitut fiir Zheoretische Physik, TU Wwn, W ~ d n e r  Hauptstrasse 8-10, A-1040 Wwn, Austria 

Abstract: We present molecular dynamics simulations of liquid and amorphous transition-metal alloys 
based on quantum-mechanically derived interatomic forces. Using the interatomic potentials calculated 
within the hybridized nearly-free-electron tight-binding-bond (NFE-TBB) theory we construct models 
for Ni,TMl-, (TM = Y, Zr, Nb, Ti, and V) glasses. We show that a clear trend from trigonal-prismatic 
to polytetrahedral local order and from strong to moderate chemical order exists in the series Ni-Y, Zr, 
Nb and with increasing Ni-content within a given system. These realistic structure models can be used 
also as a basis for selfconsistent supercell calculations of the electronic structure. Preliminary results are 
presented. 

Introduction 

The atomic structure of liquid and amorphous transition metals and alloys has been a subject of intense research 
for many years [1,2]. Several distinct glass-forming alloy families have been established [3]-[5]: (a) the transition- 
metal - metalloid systems (e.g. Fe-B or Ni-P), (b) the inter-transition-metal glasses (e.g. Ni-Zr or Fe-Ti), and (c) 
the simple-metal glasses (e.g. Mg-Zn or Ca-Al). Whereas for the simple-metal glasses of type (c) quite successful 
modelling studies using molecular-dynamics (MD) and potential-energy-mapping techniques [6,7] can be based on 
interatomic force fields derived from pseudopotential perturbation expansions [8,9], the situation is entirely different 
for the metallic glasses of type (a) and (b). For the metal-metalloid alloys the remarkable coincidence between 
the formation of glassy alloys and the formation of crystalline intermetallic compounds has led to the development 
of stereochemically defined models [lo]. For the much more complex inter-transition-metal glasses of type (b) 
attempts to build structural models have been severely limited by the lack of reliable interatomic potentials. 

Recently different theoretical attempts to this field have been made, like generalized pseudopotential perturba- 
tion theory, embedded-atom potentials or effective-medium-theory [ll]. The problem with these methods is that 
either the interactions are too complex to be really useful in MD simulations or they encounter serious difficulties 
when applied to  the transition metals with a half-filled d-band. Very recently a new bond-order approach to inter- 
atomic interactions has been proposed [12]. In this approach the covalent bond energy is written as the product 
of the transfer integral h(Rj) between atoms located a t  a distance Rij and the bond order Qi j .  The bond order 
OO is defined as the difference between the number of electrons in the bonding &(I 9 > $ 1 yj >) and in the . - 
antibonding states % ( I  yi > - I pj >). Pettifor [12] has developed a many-body expansion for the bond order 
and calculates the bbnd order for crystalline materials with a recursion method approach. This technique requires 
the atomic positions to be known whereas in our case the liquid or amorphous structure is just what we want to 
derive from interatomic forces. 

Here we present a novel hybridized nearly-free-electron tight-binding-bond (NFE-TBB) approach to interatomic 
forces in disordered transition-metal alloys. Our basic assumption is that the total energy may be divided up into 
contributions from s- and d-electrons: 

The s-electron contribution is treated in pseudopotential perturbation theory [8,9] and the d-electron energy Ed is 
treated using TBB-theory. The bond order is calculated for a Bethe-lattice reference system. For the pure metals 
this leads to interatomic forces which are essentially equivalent to those derived from second-moment expansions 
[13,14]. For the alloys it turns out that the bond order depends very sensitively on the form of the partial density 
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of states (DOS). As the DOS of an AB-alloy changes from a common band to a split band form (reflecting a trend 
from small to large differences in the group number of the constituents), the variations in the bond orders lead to  a 
change in the pair forces from a set of additive pair potentials to non-additive pair potentials with strong attractive 
short-range interactions in unlike-atom pairs. This leads to a strong topological and chemical short-range order in 
the atomic structure. Finally our computer generated structural models can be used for a selfconsistent supercell 
calculation of the electronic structure [15,16]. 

Hybridized NFE-TBB approach to interatomic forces 
Rased on density-functional theory Sutton et a1 [17] have shown that the total energy of a d-electron system may 
be written within a TBB approximation as 

where QdJrep(R) is a repulsive pair interaction provided by the electrostatic, exchange-correlation, and non- 
orthogonality contributions to the total energy. The covalent bond energy Ed-bond is given by (assuming only 
one atomic orbital per site) 

,!?&band is the band energy (local DOS n,(E)), Ed,j is a reference energy equal to  the free atom eigenvalue €d , i  

shifted by a crystal field and a non-orthogonality term. In eqn. (2), the on-site terms xi Nd,iEd,i have been 
grouped with the ionic and double-counting terms. The main advantage of the bond energy concept is that it 
avoids problems related to  charge-selfconsistency on alloying. In this case changes in the charge densities are not 
first-order and the corresponding shifts AEdZi in the site-diagonal energies must be treated in all contributions 
to the binding energy. This is difficult when the electrostatic and double-counting terms are approximated by 
an empirical pair interaction. A simple way to solve this problem is to adjust the atomic levels until each site is 
charge-neutral [12]. This leads to  a first-order change of the band energy of C, Nd,iAEd,i which must be cancelled 
according to the local force theorem of Pettifor [I81 and Andersen [19], by an opposite change in the doubkcounting 
terms Pettifor [12] shows that 

thus the bond energy with local charge neutrality satisfies the force theorem, since the site-diagonal energies do 
not appear explicitly. In the next step we want to  break the bond energy into contributions from individual 
pairs of bonds. To  do that we write the bond energy in terms of the Green's functions Gij(E) of the one-band 
TB-Hamiltonian as 

ijij 

with the bond order Qjj 

expressed in terms of the imaginary part of the off-diagonal Green's function. Formally eqn. (5) for the bond 
energy looks like a sum over bonding pair interactions 

but the bond order depends on the surrounding atomic environment. The calculation of the Green's function 
requires an appropriate reference configuration. Chosing a Bethe-lattice reference system, the Green's function 



can be calculated using renormalized perturbation theory [20]. Restricting to nearest neighbours interactions only 
(coordination number 2) we get a closed set of equations for the Green's functions [21] 

with the self energy Ai and the transfer matrix S determined by the solution of the equation 

Eqns. (6) to (9) completely determine the bond order potential @d,bond. The average canonical transfer integral 
h(&) is determined by a second moment approximation and fitted on the canonical bandwidths of Andersen and 
Jepsen [22]. For a fixed nearest neighbour distance (and hence a fked transfer integral) we find O: f3 ": 
1 / d  and hence m f i  as expected from a tight-binding approach [13,14]. For the repulsive d-potential 
@d,rep(Rij) we take the expression of Wills and Harrison [14] who showed that it may be modelled as Cd,,,/Rfj. 

The TBB-approach restricted to the nearest neighbours is a good approximation for the d- but not for the 
s-electrons. On the other hand i t  is well known that the s-electron contribution is non-negligible (231. So we include 
the s-electrons in pseudopotential perturbation theory and account for s-d hybridization by setting the numbers 
N, and Nd of S- and d-electrons equal to the values resulting from a selfconsistent band-structure calculation for 
the crystall~ne metal [24]. The s-electron pseudopotential is modelled by an empty-core potential with core radius 
R, fitted to the structure of liquid metals. Screening is treated in Ichimaru - Utsumi 1251 approximation to the 
dielectric function of the electron gas. This yields the following expression for the total pair potential 

Table I of Ref. 21 contains all necessary input-parameters for the calculation of the interatomic forces. 
One of the main advantages of the bond order concept is the readily generalization to A,B1-, alloys. For the 

reference system we have chosen a Bethe-lattice with a coordination number Z = 12 and a random occupation of 
all sites. The generalization of eqns. 8 and 9 yields [21] 

where i, j are nearest-neighbour sites, and 

hoo 
Sup=-Sa, a , p = A , B  . (12.6) 

hap 

with h a s  = d m .  This completely determines the bond order potentials Q,ap,b,,d(R,j) = hag(hj)Oi, .  For 
the repulsive d-potential C J , ~ , ~ ~ ~  a straightforward generalization of the Wills - Harrison expression is taken [14] 
and the selectron contribution @,p,, is given by the well known standard pseudopotential formulae [9]. 

Atomic and electronic structure 

We have performed microcanonical molecular dynamics (MD) simulations for N = 1372 particles and a time 
increment of At = 10-'5 s. Around the nearest neighbour distance the pair interaction bas an equilibrium between 
attractive d- and repulsive s-forces. At the scale of thermal energies (Q, - amin = ksTM, TM is the melting 
temperature) the slope of the pair potential is softer than for simple metals. The MD simulations describe the 
liquid structure of pure transition-metals very well [26]. 

As an example for a glassy alloy we present th MD-results of amorphous Ni35Zr65 The electronic DOS 
illustrated in Fig. l(a), shows a relatively narrow, nearly completely filled Ni d-band overlapping with a broad Zr 
d-band. &om the imaginary part of the off-diagonal Green's function (Fig. l(b)) we find that the Zr-Zr and Ni-Zr 
interactions are dominated by bonding combinations of nearest-neighbour d-states, leading to large bond orders 
Ozrzr = -2.11 and  ON^-^^ = -1.97, whereas a nearly complete cancellation between bonding and antibonding 
interactions leads to a small B N ~ ~ ~  = -0.59. This explains the strong non-additivity of the pair interactions (see 
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Fig. l(c)). The  results of the MD-quench ( g  E IOl4 Ks-') are shown together with the results of neutron- 
scattering experiments with isotopic substitution [27] in Fig. 2. We note tha t  for all significant features we find a 
full agreement between theory and experiment especially in the pronounced chemical short-range order (CSRO). 
The form of the partial GjJ's is far away from that  of a random packing model and points to a topological SRO as 
well i\:i35Zre5 crystallizes in the CuAlz structure and the peaks in the reduced radial distribution functions show a 
reasoriable correlation with the interatomic distances in the crystal (see also Table l).This correspondence between 
the crystalline and amorphous phases is also valid for other Ni-based glasses like Ni33Y~7, N i = z r ~ - ~  (x = 0.35, 0.50, 
0.65: and Ni,Nbl-, (x = 0.44, 0.62) [22]. For instance the study of the Ni-Ni-Ni bond-angle distribution (Fig. 3)  
sho\rzs a clear trend from trigonal-prismatic (Ni33Y67, Ni35Zr65) to a polytetrahedral (Ni44Nbs6) local order in the 
glass as in the crystal. This is also confirmed in the variations of the Ni-Ni correlation functions (Fig. 4(a)). In 
Xi-Y glasses the position of the first three peaks in gNiNi(R) corresponds almost exactly to the peaks i n  l l ~ e  B-B 
correlation function in NiG4BS6 and NialB19 [28], in the Ni-Nb glasses the form of gNiNi(R) is much more closer 
to the dense-random-packing of hard spheres (DRPHS) limit. The  same trend is observed in Ni,Zrl-, glasses 
with increasing Ni-content (Fig. 4(b)). The origin of these trends can now be traced back to  the variations of the 
interatomic forces and of the electronic structure. 
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Figure 1 .  (a,b) Electronic DOS n(E) and imaginary part of the off-diagonal Green's function G.,(E) for a random Bethe- 
lattlce for Ni35Zr65 (c) Effective interatomic potentials 4 1 ~ ( R )  for NiasZrss. 

TabIe 1: Interatomic distances d and coordination numbers N I J  
in Ni35Zr65 glass and the related intermetallic compound NiZr*, 
experimental data from Ref. 27. 

d(A) NIJ d(A) NIJ d(A) N I J  
Theory Experiment 

Ni-Ni 2.60 1.2 2.45 3.3 2.63 2 
Ni-Zr 2.70 8.2 2.85 8.6 2.76 8 
Zr-Ni 2.70 4.4 2.85 4.8 2.76 4 
Zr-Zr 3.25 10.7 3.30 11.0 2.99-3.43 11 

Figure 2: Partial reduced radial distribution func- 
t~ons GIJ(R) for amorphous NirsZrss. Full lines 
- theory, daslled lines - experiment (after Ref. 
27). The vertical bars represents the interatomic 
distances in the CuA12-type compound NiZr2 and 
they are scaled to the number of neighbours. 
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Figure 3: Ni-Ni-Ni bond-angle distri- 
bution in Ni-TM glasses. The bond- 
angle in the Ni-chains of the NiZr crys- 
tal and in a regular icosahedron are in- 
dicated. 

Figure 4: (a,b) Ni-Ni and B-B correlation functions in Ni-B and Ni-TM glasses. 
Distances are scaled to the position of the second peak. 

E - E, teV1 Binding Energy (eV) 

Figure 5: (a) Total, site- and angular-momentum decomposed electronic DOS for crystalline and glassy NisZrss. Full line: 
total and local DOS, dotted line: partial DOS of s-states, dashed line: pstates, dot-dased line: d-staes. The full dots mark 
the d-DOS on a Bethe-lattice.(b) Calculated and measured photoemission intensities I(E,hw)at different exciting energies. 
Full line: total intensity, dotted line: Ni-contribution, dashed line: Zr-contribution. The experimental results are from Refs. 
29 and 30. 
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The computer generated structural models may serve as the basis for a selfconsistent supercell calculation of the  
electronic structure and photoemission intensities [15,16]. As in the atomic structure we find a strong correlation 
between the crystalline and amorphous (liquid) phases (Fig. 5). The  calculated DOS agrees reasonably well with 
the Bethe-lattice results and shows the consistency of our theory. 

Concluding we have presented a novel hybridized N F E T B B  approach to  interatomic forces in disordered 
transition-metal alloys. This  allows to  investigate the structural and electronic properties of transition-metal 
glasses a t  a level of detail previously not possible. Ongoing work in our group extends thes investigations to  Fe- 
and Co-based alloys and p-d systems. 
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