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Abstract. A recently developed modeling scheme for the numerical simulation of coupled
electrostatic-mechanical systems such as electrostatic transducers is presented. The scheme

allows the calculation of dynamic rigid motions as well as deformations of materials in an electric

field. The coupled system, described by the equations governing the electric and mechanical field,
is solved by a combined Finite-Element/Boundary-Element-Method (FEM-BEM) Computer

simulations of a micropump and of an acceleration sensor are presented demonstrating the

efficiency of the developed algorithm.

1. Introduction

In electrostatic-mechanical systems a material is subject both to rigid motions and to elastic

deformations, which in turn may strongly influence the electric field and thus the electric force

distribution A typical electrostatic-mechanical system is a micromachined pump ill, shown

in Figure 1. If an electric voltage is applied to the electrodes, the elastic pump diaphragm
(electrode 2) is deformed by the electrostatic force and bends towards the counterelectrode

(electrode 1). Thereby, fluid will be sucked in through the inlet valve. When the supply
voltage is switched off, the relaxation of the diaphragm will push the fluid through the outlet

valve.

2. Governing Equations

The electric field in a region containing no free electric charges can be described by

V cV#
=

0 Ii)

Here, c denotes the permittivity tensor and # the scalar electric potential.
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Fig. 1. Schematic view of an electrostatically driven micropump [11.

In the case of linear elasticity and isotropic materials, the dynamic behaviour of mechanical

systems can be described by

2(1~ u)

~~
~~~ ~

1

2u
~~~

~~
~ ~ ~~t~ ~~~

where d is the mechanical displacement, f the applied mechanical force, E the modulus of

elasticity, u
Poisson's ratio and p the density.

The electrostatic force between the electrodes is calculated based on the electrostatic force

tensor TE, where E
=

(E~, Ey, Ez) denotes the electric field

cE( )c[E[~ eExE~ cE~Ez

TE
=

eE~E~ cE( )e[E[~ eEyEz (3)

eEzE~ cEzE~ cEj )e[E[~

The electrostatic force FE is given by

FE
~

/ /
TEn dS, (4)

A

where n is the normal vector.

3. FEM-BEM-Coupling

The boundary element discretization of ii) yields the following BElmatrix equation

H~ (4l)
=

G~(4l~) (5)

with the two boundary element matrices H~ and G~, the nodal vect/r (4l) of the scalar electric

potential and the nodal vector (Am) of the normal derivatives of the scalar electric potential.
Applying the FE-formulation to (2) leads to the well-known matrix equation for the me-

chanical quantities
Mlil + Cldl + Kldl lflw> wn)1

~

lot 16)
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Fig. 2. FEM/BEM discretization of the actuation unit (Fig. iii).

with mass matrix M, damping matrix C, stiffness matrix K, force vector (F) including the

nonlinear term, nodal accelerations (d), nodal velocities (d) and nodal displacements (d).
The FEM/BEM discretization of the actuation unit (Fig. 1) is performed according to Fig-

ure 2. Finite elements are used to describe the mechanical field in the two electrodes, whereas

the electric field in the gap between is modeled by boundary elements. This approach has the

advantage, that the elastic pump diaphragm (electrode 2) can move towards the stationary
counterelectrode (electrode 1) without deforming any finite elements which would otherwise

(with pure FE-modeling) be necessary to describe the electric field.

The two boundary element matrices H~ and G~ have to be updated corresponding to the

mechanical displacement.

4. Calculation Scheme

The use of the Newmark Method [2] with the two integration parameters fl and ~fH for the time

discretization of (6), leads to the following predictor /corrector algorithm:

Predictor:

Ill
=

idl~ + AtlUl" + )At~li 2fl)lal" 17)

Ill
=

iUl" + Ii ~fH)Atlal" 18)

Equation:

M*lql"+~
=

lFll4ll~+~,14lnl"+~)l Kltil Clfll

M*
=

M + ~~atc + flat2K j9)

Corrector:

idl"+~
=

Ill + flAt~ial~+~ (lo)

lUl"+~
=

ill + ~fHAtlal~+~ Iii)

The direct coupling of is) and (6) leads to a nonlinear system of equations. Using predictor
values for the calculation of the electrostatic force, a decoupling into an electrical and mechan~

ical matrix equation can be achieved. To ensure the strong coupling between the electrical and

mechanical quantities the following Predictor /Multicorrector Algorithm similar to [3j is used-

STEP 1: Set the iteration counter i to zero and define the predictor values as follows:

Electrical quantities:

ij4j
=

jwjn j12)

~l+~l
=

14lnl~ i13)
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Mechanical quantities:

~
Ill

=

ldl~ + AtlUl~ + )11 2fl)At~lal~ l14)

~ifll
=

iUl~+li-7H)Atlal~ (is)

ihl
=

i°1 l16)

STEP 2: Solve matrix equation system for the electrical and mechanical quantities:

H~ -G~ 0
i~~i

iAoii

0 0 M* j()ji ~ jAQ21 i~~~

i/~Qii
"

-H~~141+G~~14ni i18)

1/~Q21
#

ifi ~141> ~14ni)1 Kiii Ci°i J~ihi i19)

STEP 3: Perform the corrector phase (predictor update).
Electrical quantities.

~+~l+I
=

~l+1+lA4ll 120)

~+~l+n I
=

~l+nl + lA4lnl 121)

Mechanical quart.hires:

~+~lil
=

~lil+flAt~lAal 122)

~+~lfll
=

~lfll+7HAtlAal 123)
~+~ lkl

=

~lkl + lAal 124)

STEP 4: Next iteration: go to STEP 2.

STEP 5. Solution for time step in +1).

In (12)-(24),
1 denotes the iteration counter, (AQI) and (AQ2) the residual vectors of the

right hand side for iteration i and (ha), (A4l) and (A4ln) the solution vectors of the current

iteration. The main difference from a standard iteration algorithm lies in the fact, that the

right hand side vectors of iteration
i are calculated from the difference of the source vectors

and the solution of iteration i
As

a result, the residual of the right hand side vectors as well

as the solution vectors converge to zero by increasing iteration and, can be used for stopping
the iteration. According to the mechanical displacement the boundary matrices G and H have

to be updated. For linear elasticity the matrices M, C and K remain constant throughout
the whole simulation. For a time step value At, considering the physical behaviour of the

structure, no more than 2 iterations were necessary. Iterative solvers GMRES (Generalized
Minimum Residual) and CGS (Conjugate Gradient Squared) have been adapted to solve (17)

in a very fast way. The flow chart describing the algorithm is shown in Figure 3.

5. Verification

The verification of the calculation scheme described above has been performed by computing
several analytically computable problems. In one of these examples the deformations of two

circular plates due to an applied electric voltage have been calculated. Figure 4 shows the

relative error of the calculated deformations compared to the analytical solution for two differ-

ent boundary conditions. The clamped plate experiences a greater bending moment than the

simply supported one. The use of linear interpolation functions in the finite element scheme,

results in a greater relative error (Fig. 4).
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Fig. 3. Calculation scheme.
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Fig. 4 Relative error of numerically calculated displacements compared to analytical solution for

two different boundary conditions a) Clamped plate. b) Simply supported plate.

6. Applications

6.1. MICROPUMP. In a first example, the micromachined pump, as already shown in Fig-

ure 1, was modeled. This pump has a diameter of 7 mm, a total height of about 1mm and a

gap thickness of 4 pm between the elastic pump diaphragm and the counterelectrode. Figure
5 shows the mechanical deformations of the actuation unit when

a
dc voltage is applied. One

point of investigation was the nonlinear dynamic response of the micropump. The pump was

excited by a sinusoidal voltage with a frequency of1 kHz and dilserent amplitudes. The dynamic
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Fig. 5. Mechanical deformations of the actuation unit of the micromechanical pump, when the

electrodes are loaded by a voltage.
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Fig. 6. Mechanical displacement in the center of the pump diaphragm. a) Original amplitude of

applied voltage. b) Twice the original amplitude of applied voltage.

behaviour was analyzed by computing the electrostatic-mechanical system with the described

calculation scheme. In Figure 6, the center displacement of the elastic pump diaphragm is

depicted as a function of the applied voltage The corresponding frequency spectra can be

seen in Figure 7. For a good comparability each curve in Figures 6 and 7 is normalized to its

maximum.

6.2. ACCELERATION SENSOR. In a second application example, a capacitive acceleration

sensor, which is also fabricated by micromachined techniques was modeled. The Finite-Element

/ Boundary-Element model of this capacitive acceleration sensor is shown in Figure 8. The

sensor consists of a fixed electrode 1, an etched silicon structure with counterelectrode 2 and

a seismic mass. The size of the air gap between the electrodes is ~bout 20 pm. Loading the

sensor with an acceleration pulse causes the silicon structure to
b/ deformed (Figure 9) and

the change in the capacitance is a direct measure of the acceler/tion. Without using any

controller, the silicon structure oscillates with its eigenfrequency to a new position according

to the acceleration pulse (Fig. 10). Applying
a PID-controlled voltage to the electrodes, the

transient response can be kept to a minimum and the silicon structure moves to the old position

(Fig. 10). Furthermore, the controller output (voltage, which is applied to the electrodes) is a

direct measure of the acceleration.
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Fig. 7. Frequency spectrum of the mechanical displacement in the center of the elastic pump
diaphragm. a) Original amplitude of applied voltage. b) Twice the original amplitude of applied
voltage.

rotational axis seismic mass

finite elemen~

(mechanical field)

I (fixed)

Fig. 8. Finite Element Boundary Element mesh of the acceleration sensor

Fig. 9. Deformations of the moving part of the acceleration sensor due to an
acceleration pulse.
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Fig. 10. a) Uncontrolled dynamical behaviour due to an acceleration pulse. b) Controlled dynamical
behaviour due to an acceleration pulse

7. Conclusion

A new approach for the numerical calculation of electrostatic-mechanical systems has been

introduced. The use of the FEM-BEM coupling with a
Predictoilmulticorrector algorithm,

an efficient calculation scheme for the precise numerical computation of such systems has

been achieved. Two practical examples la micropump and an acceleration sensor) prove the

applicability of the developed algorithm.
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