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Abstract. We have calculated the general dispersion relationship for surface waves on a

ferrofluid layer of any thickness and viscosity, under the influence of a uniform vertical mag-

netic field. The amplification of these waves can induce an instability called peaks instability
(Rosensweig instability ). The expression of the dispersion relationship requires that the critical

magnetic field and the critical wavenumber of the instability depend on the thickness of the fer-

rofluid layer. The dispersion relationship has been simplified into four asymptotic regimes: thick

or thin layer and viscous or inertial behaviour. The corresponding critical values are presented.

We show that a typical parameter of the ferrofluid enables one to know in which regime, viscous

or inertial, the ferrofluid will be near the onset of instability.

Rdsumd. Nous avons calcu16 la relation de dispersion des ondes de surface dans une couche

de ferrofluide d'6paisseur et de viscosit6 quelconques, soumise h un champ magn6tique normal h

sa
surface (instabilit6 de pics de Rosensweig). Cette relation montre que le champ magndtique

critique et le vecteur d'onde critique de l'instabilit6 ddpendent de l'6paisseur de la couche de

fluide. La relation de dispersion a dt6 simplifi6e pour quatre r6gimes asymptotiques: couche

dpaisse ou mince et comportement visqueux ou inertiel. Nous avons calculd les valeurs critiques

de l'instabilit6 dans ces quatre cas. Nous montrons qu'un paramAtre typique du ferrofluide

permet de savoir dons quel r6gime, visqueux ou inertiel, se situe le ferrofluide prbs du seuil de

l'instabilitd.

1. Introduction

It is known since the experiment performed by Cowley and Rosensweig ill, 2j that a normal

magnetic field has a destabilizing influence on a flat interface between a magnetizable fluid and

a non magnetic one. Above the magnetic induction threshold Hcr,t, the initially flat interface
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exhibits a stationary hexagonal pattern of peaks (Rosensweig instability). The hexagonal

pattern becomes a square pattern above another critical magnetic induction H[~;~ > Hcr,t (3j.
In this paper, we want to obtain a general dispersion equation (ferrofluid layer of any thick-

ness and any viscosity under the influence of a uniform vertical magnetic field) by linearizing the

equations governing the problem. This allows to calculate the critical values of the instability:
wavenumber and magnetic induction. Nevertheless, linearized equations are inadequate for the

full description of either phenomenon: the symmetry of the developed wave array (hexagonal

or
square) and the wave amplitudes may be determined only from nonlinear equations. It

has been treated by Gailitis in 1977 [3j. A generalized Swift-Hohenberg equation constitutes a

minimal model to account for the formation of hexagons as well as squares. In such an envelope
equation, for which the quadratic term is sufficiently small, hexagons are to be expected from

the modeling [4]. Furthermore, a weakly nonlinear analysis involves that the dynamics of the

patterns depends on their symmetry [5j.
We shall remember previous calculations of dispersion equations in Sections i-i and 1.2

will put in evidence the analogy with the electric case. Indeed, a layer of liquid metal under

a normal electric field develops a similar instability of peaks (Taylor cones [6j). We applied

to the magnetic case the previous analyse of Hynes [7j and Limat [8j for the gravitational
amplification of capillary waves

(Rayleigh-Taylor instability) and of NAron de Surgy et al. [9j
for the electric amplification of capillary waves (Taylor cones) [6j. The general dispersion
relationship that we obtain in Section 3 leads to the fact that the magnetic induction threshold

and the critical wavenumber depend on the thickness of the ferrofluid layer [10j. We derive

the asymptotic behaviour in various regimes and give analytical dispersion equations in the

case of thick or thin, inertial or viscous layers. From
a

general approach,
we then recover

three previously known results (thick-inertial [2), thick-viscous ii i), thin-viscous [12j) obtained

from various approaches. Furthermore, we give an explicit expression of the critical magnetic
induction in the case of a thin layer of ferrofluid: it differs from the one of the thick case. We

also demonstrate the influence of the ratio iv /lc~ where lc is the capillary length and iv the

viscous length of the ferrofluid: depending on the value of this ratio, the ferrofluid will have a

viscous or inertial behaviour near the onset of the instability.

1.I. PREvIous APPROACHES. Ferrofluids or magnetic liquids are permanent, colloidal

suspensions of ferromagnetic particles (100 I) in various carrier solvents. Fluid instabilities

can arise with these liquids, especially surface instabilities. In the case of the peaks instability,
the study of the linear stability of the interface, by Cowley and Rosensweig [i), between an half-

infinite and inviscid ferrofluid of density p and the vacuum, with normal modes of perturbation,
leads to the following dispersion relation:

~ ~
~lo(lL/lLo 1)~ H~k~

~~~ps~
=

-P9k 'f~
i + po/lL °

where s is the growth rate of perturbation, k (the modulus of k) is the horizontal wavenumber,

~t is the magnetic permeability of the ferrofluid, ~f is the interfacial tension ferrofluid-vacuum,
Ho the modulus of the normally applied magnetic induction and g the gravitational field.

The critical values of the instability are then:

~~'~ o
~~~~~'~2 ~

(2)

kcr;t
=

fiT
=

k~
=

i/i~

where kc is the capillary wavenumber.
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Fig. 1. Curve of marginal stability: thick-inertial layer.

Above the threshold of linear stability, a broad band of wavenumber is theoretically found

unstable (Fig. i). It is seen from other instabilities that the mechanisms of wavenumber se-

lection are very complex, including the effects of sidewalls, time-dependent effects in cellular

structures, axisymmetric structure in the case of Eutectic solidification, the non-linearities of

the problem, etc. [13). A common choice has been to consider then that one wavenumber km is

selected. This wavenumber corresponds to the maximum growth rate srn of the small undula-

tions, solution to the following equation 0ksjH=const
=

0. This prediction has only be checked

when Ho increases very quickly from a subcritical value to Hcr;t. In most cases, the wavenum-

ber remains equal to kcr;t above the onset, whatever the symmetry is or the experimental
procedure used to increase the field (continuous increase [i), field jumps [14j or alternating
field [isj at different frequencies). This encouraged Salin, in 1993, to take into account the

effect of the ferrofluid viscosity, adapting the Landau and Lifshitz approach [16j. His result

leads to a wavenumber km equal to kcr,t, whatever the field is ii ii. Simultaneously, NAron de

Surgy et al. [9j obtain the same result for metal liquids. As seen above, the experimentally
selected wavenumber is not obviously km nor kcr,t Ii?]. We shall see in Section 4.1.3 that

the description of the unstable behaviour of the ferrofluid (viscous or not) near the onset can

be determined by the value of the ratio iv /lc. When this ratio approaches zero, an inertial

description is actually sufficient.

1.2. ANALOGY WITH ELECTRO-CAPILLARY INSTABILITY. In 1993, NAron de Surgy et al.

studied the linear growth of electro-capillary instabilities in the very general case where the

viscosity of the fluid and its thickness are of any value [9], following the studies of Hynes [7] and

Limat [8]. The study of this instability is similar to our study: an electric field that is applied
normally to the free surface of a conducting fluid (mercury, for example) has a destabilizing
effect on this interface. In their paper, they derived the asymptotic behaviour in various

regimes and gave dispersion equations in the case of thin or thick, inviscid or viscous films:

we present a similar approach for the magnetic case (but note that substituting E for H in

the electric dispersion equations does not result in the correct magnetic dispersion equations).
Furthermore, we note that the critical electric field and the critical wavenumber of the electro-
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Fig. 2. Ferrofluid layer in the vacuum and in a magnetic induction.

capillary instability does not depend on the thickness: While E
=

0 in the whole layer of

mercury, there is penetration of the magnetic field in the ferrofluid and the distribution of this

field obviously depends on the layer thickness (boundary conditions).

2. Characteristic Scales for Various Asymptotic Regimes

We consider
an

incompressible and viscous film of magnetic fluid of density p, dynamic viscosity

1/, kinematic viscosity u
and magnetic permeability ~t, that occupies the space between z =

0

and z = -a, in the vacuum. The geometry is supposed to be infinite for both x and y and the

medium above and below the ferrofluid is also infinite, so that we consider a two-dimensional

ix, z) problem (Fig. 2).
If we want to introduce the thickness effects, we have to consider a horizontal length scale

[
=

~/2x (with ~
=

2x/k)~ and a vertical length scale lz. The value of lz will be taken as the

lowest value between the film thickness a and ~/2x.
For the study of the viscosity ejfects~ we shall introduce the Reynolds number (lte

=
inertia

forces /viscous forces). The Reynolds number is:

~
po~v jsj

~~ m ~uiji/i~j2+ji/i~)2j

where v is the fluid velocity and li the Laplacian operator.

For a thick film~ where the vertical scale is ~/2x, lte
=

j.

For a thin film~ where the vertical scale is a, lte
=

I

If lte m i, we may neglect viscosity and call the film inertial, and if lte « i, we may neglect
inertia and call the film viscous.

This study results in four asymptotic behaviours (Tab. 1, [7-9j ).

Table I. The asymptotic regimes.

lte « i lte » i

a/[ « i thin-viscous regime: lte
=

@ thin-inertial regime: lte
=

@
a/[ » i thick-viscous regime: lte

= ~)~~ thick-inertial regime: lte
= ~)~~



N°8 DISPERSION RELATION IN FERROFLUID LAYERS 1163

3. Equations of the Problem

We shall present the equations governing the system shown in Figure 2. Linearity allows us to

treat the different Fourier components separately. We shall denote fix, z) the deformation of

the interface, v(x, z) the velocity of the fluid, H
=

Ho + h the perturbed magnetic induction

and n the unit vector normal to the interface where n ct (0~(, -1)uz at first order. We consider

~t(H)
=

~t(Hcr;t) because our analysis is valid near the onset (see Sect. 5).
Local equations governing the motion of the magnetic fluid are:

IV v =
0 (continuity equation)

p[0tv + Iv i7)v]
=

-i7 p + ~lliv + pg (Navier-Stokes equation)

Other governing relationships are the Maxwell equations:

IV x H
=

0 (no charges, no
currents)

i7 H
=

0

The boundary conditions (where [[Xii
=

value of X above the interface value of X under

the interface)
are given by:

0t(
" vz v~0~( v~0~( at z =

(, (free surface condition)
-[jJj]n~ + [[T~k + a(~]]nk (~/R)ni

=
0 at z =

(. (sress balance at the interface)

[[n ~tH]]
=

0 at z =
( and z = -a

[[n x H]]
=

0 at z =
( and z = -a

uz =
0 at z = -a

vx =0 atz=-a

where T~k is the stress tensor given by 11, 2]:

T~~
=

~H~H~ )H21~~

and a(~ is the viscous rate-of-strain tensor given by:

a~k " ~(~~kV~ + ~~~Vk)

and R~~ is the curvature of the interface (positive if directed towards the fluid):

_~
~2 ~2

~ ~
~~4 ~ @~~'

We seek solutions with the following form:

A
=

Re[I(z) exp(st ikx)]

for (, h~, hz, v~, ~z. At first order, we get a system of nine linear equations in nine unknown.

In order to find
a non trivial solution, the following determinant has to equal zero. Similar
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Table II. Capillary quantities.

capillary length lc
=

(~f/pg)~/~

capillary time tc
=

(lc/g)~/~

capillary Laplace pressui~e pc =
~f/lc

calculations can be read in the electro-capillary case [9].

0 sh(ka) 0 sh(qa) 0 0 0 0 0

k kch(ka) q qch(qa) 0 0 0 0 0

(2~k + fi )ch(ka) 2~k + fl 2~qch(qa) 2~q i~toHo pg + 'ik~ -i~oHo woHoe~~ 0

2~k~sh(ka) 0 ~(k~ ~ q~ )sh(qa) 0 0 0 0 0 0

0 0 0 0 0 0 e~~ 1 -1
=

0

sh(ka) 0 sh(qa) 0 0 -is 0 0 0

0 0 0 0 0 0 e~~ -1 ~f
0 0 0 0 -1 -ikHo( ~f 1) 1 e~~ 0

0 0 0 0 ~o/~l 0 -1 e~~ 0

with q~
=

k~ + s/u.
We shall now use dimensionless values with capillary scale as reference as seen in Ta-

ble II. We introduce the parameter f
=

(iv /lc)~/~ (denoted d in [9]) where the viscous length
iv

=
u~/~g~~/~ [7, 8]. We obtain that q~

=

k~ + ).
We also denote 4l

=
Hj/(H)$(C~)~ where H)$(C~ =

Hcr;t (Sect. i.I). The dispersion relation

s =

s(Ho, k) is an implicit equation and its dimensionless form can be written:

4qk~(q k coth(qa) coth(ka)) (k~ + q~)~(q coth(ka) coth(qa) k) +
~~~ ~~ ~ ~h(~a)~h(k~

=

~
(k + k~ 24lk~ ~ ~°~~

)(qcoth(qa) k coth(ka)) (3)
f i + ~O ~

l+F(ka)

where
ji /~ll~~)e~~~F(ka)

=

(1 + ~/~to cotl~(ka))sh(ka)

We can develop equation (3) when s tends to 0 (s
=

0 is a root of Eq. (3)). We consider

then that bk
= q k

r~

fi and we obtain that k + k~ 24lk~ ~~)°("
r~

bk. bk
=

0
1+@fi

(I.e. s =
0) leads to the curve of marginal stability. We obtain that kcr;t and 4lcr;t depend on

a [2,10]. We shall now study the dispersion relationship in asymptotic cases.

4. Asymptotic Behaviour of the Dispersion Relation

4. I. THICK FILM. The equation (3) can be simplified in the regime a » ~ (ka » 1).

4.I.I. Thick-Inertial Film. This corresponds to the case where lte » 1 I-e- fi
» i

(dimensionless Reynolds).
The equation (3) becomes the well-known Cowley and ltosensweig's result [ii

:

s~
=

-k~ + 24lk~ k (4)
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where 4lcr,t
=

i and kcr;t
=

i. As was shown previously, the wavenumber corresponding to the

maximum growth of perturbations, is found to be field-dependent:

km
=

(24l + 3).

Let us consider the parameter 5 so that 4l
=

1+ 5 and the parameter bk, where k
=

I + bk Ilk
depending on which wavenumber(s) is (are) actually selected). Near the onset, we develop the

growth rate s(4l, k) into a series in 5 and bk. We found at lowest order in 5 and bk (5 and bk

independent)

s~(4l
=

1 + s, k
=

kcr;t + bk)
=

s~(5, bk)
=

25 bk~.

As seen above, a band of wavenumbers of width 5~/~
near threshold is unstable [13j. This

means that the order of magnitude bk~ is at most 5 so we can take s~ to be of order 5.

If km is actually selected, we check that bk~ is of order of magnitude 5~ (which is less than 5).
If the wavenumber selected is k

=
I + /fi (we remain on the curve of marginal stability),

we

have checked that a similar analysis is adequate, by making calculations at the following order.

The validity conditions, at the lowest order, for this regime can be summed up as
follows:

la m i (ha m I, thick film)

f~ < 5
fi

» i and j of order of 5~/~ If, inertial film)

4.1.2. Thick-Viscous Film. In this case, lte « i I.e.
)

« i. The equation (3) leads to

the viscous-dominated relation [9,11]:

s =
(-k + 24l (5)

2f k

where ~cnt
=

i, kcr;t
=

i and km
=

kcr;t
=

i, whatever 16 is.

Near the onset of instability, the growth rate becomes after development:

sj~,ik)
t

j2~ ik2j/j2fj.

We can then take s to be of order El f. The validity conditions become:

la»1
f~ms

The condition of viscous regime are always true at the onset.

4.1.3. Range of the Asymptotic Regimes. As seen above, the cross-over between the inertial

and the viscous regime appears when s =

f~ where 5 < 1 (Fig. 3). This relation yields the

following consequences:

.
strictly at the onset of instability is

=

0), the condition of inertial regime is never reached:

the ferrofluid has a viscous behaviour if is finite)

. by increasing the magnetic induction, we reach the inertial regime above s =

f~ (while

keeping s « 1).
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viscous regime inertial regime

~~
s

Fig. 3. Viscous and inertial regimes, thick layer; f
=

(lv/lc)~/~ and 5 =
4l 1.

Table III. Range of the viscoits and inertial regimes in the thick case.

ferrofluid f Ho /H)((C~ when begins the inertial regime

EMG 507 0.0068 1.00002

EMG 901 0.039 1.0008

APG 512 A 0.27 1.04

APG 314 0.71 1.25

APG 067 1.29 1.8

For example, with the ferrofluid APG 512 A If
m

0.27), the inertial regime takes place when

Ho ct H)$(C~(I + ))
=

H)((C~(1+ ~)
i-e- Ho m 1.04 H)$(C~. In Table III,

we present different

values of the parameter f. With the ferrofluid EMG 507, the inertial regime is reached when

Ho ~M 1.00002 H)$(C~. we can then consider that the description thick-inertial is adequate,
whatever Ho is.

It appears then, that the regime viscous or inertial, near the onset, depend on the type of

ferrofluid. One also could use a ferrofluid, for example APG 067 or APG 314, that enables to

remain in the viscous regime far enough from the onset. Physical data of various ferrofluids

are presented in the Appendix.

4.2. THIN FILM. It seems obvious that the thick case is easier to experiment than the

thin case. In order to stick to an opinion, the typical ferrofluid APG 512 A has a
capillary

length lc ct 1.7 mm so that for the thin regime, the condition
a < lc is quite difficult to

experiment. The thin regime could be easier to attain if we could increase lc and this may be

achieved under microgravity conditions. Typical conditions of microgravity experiments lead

to a value of10~~ g (I g =
9.81 m/s~) in parabolic flys [18] (l~ ct 17 mm) and 10~~

g in orbital

stations [19] (lc i 1.7 m). In order to make an experiment, one can choose a value of g that

enables to have a value of lc large enough but not too much (the distance between the peaks

is also proportional to lc). Brand and Pettit made an experiment with a 8 mm deep layer on a

parabolic fly [20] (as the capillary length of their ferrofluid is lc
=

15.5 mm in the low gravity
phase of the parabolic fly, they were not actually in thin nor thick regime).

4.2.1. Thin-Inertial Film. If the Reynolds number Re » i I.e.
@

» i, we obtain the

following equation (~):

s~
=

a(-k~ + 24lk~ ~ ~ ~°~~
k~). (6)

2

(~ see [21( for the electric analogy.
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Let us consider the function c(~t)
=

~*§°/", where c(~t) < 1. At the onset of the instability,
4l

= ~)~ ~~
(> i) and kcr;t

=
i. When 4l >

~
~)~ ~~,

the wavenumber of maximum growth rate

is given by:

km
=

(34lc + 8).

The asymptotic critical magnetic induction in the thin case is different from the one of the

thick case and always larger. In order to quantify this difference,
we have to solve implicit

equations in Section 5.

We denote 5 as 5 =
4lc -1. Near the onset of instability, the growth rate can be developed,

at lowest order in s and bk, and leads to:

s~(4lc
=

1 + E, k
=

kcr;t + bk)
=

s~(E, bk)
=

a(2E bk~).

We obtain then that s~ has the order of magnitude as.

The validity conditions are:

la « i (thin film)
f~la~ < E (inertial film)

4.2.2. Thin-Viscous Film. When the Reynolds number lte « i i.e.
@

« i, the equation

(3) becomes [12]:

~

~
~~ ~ ~~~~~

~
i~~~~ ~~~' ~~~

At the onset of the instability, 4l
= ~~

~
~~

and kcr;t
=

i. When 4l >
~~

~
,

the wavenumber

of maximum growth rate is given by:
" " "

km
=

(34lc + 8).

Near the onset, we develop the growth rate in 5 and bk:

s(4lc
=

1 + E, k
=

kcr,t + bk)
=

(a~ /3 f)(25 bk~)

or also s of order of magnitude (a~/f)5.
The validity conditions are:

la < i (thin film)

f~ la~ » 5
(viscous film)

The dispersion relations of the different cases are presented in Figure 4.

4.2.3. Near the Onset of the Instability. In the thin case, we can notice that:

. at the onset of the instability, the thin film of ferrofluid has
a viscous behaviour;

.
the cross-over to the inertial regime is reached when 5 =

f21a~ (Fig. 5).

In the case of a thin layer, [ tends to 0: it results in the fact that a
thin film has a viscous

behaviour, -at the onset and far above. With the ferrofluid EMG 507 f m 0.0068), we reach

the inertial regime when Ho "
H)((~'(1+ [)

=
H))(~'(i + f~/(2a~)) I.e Ho f~ 3 H)((~' la

=
0.1).
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Fig. 4. The dispersion relations: a: km depends on ~; kcr,t =1; Alar,t =1. b: km
=

key,t =1;

4lcrit
=

1. c, d: km depends on 4l; kcr,t
=

1; 4lcrit =1/c
=

fi.
~*

v

viscous regime inert13l regime

f21as
~

Fig. 5. Viscous and inertial regimes, thin layer; f
=

(iv /lc)~/~,
e =

4lc -1 and a is the layer
thickness.
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5. Implicit Equations for the Asymptotic Critical Fields

As the magnetic permeability depends on the magnetic field, each asymptotic value of the

critical magnetic induction (thick
or

thin) satisfies an implicit equation.

.
In the thick case, the onset is given by equations (2): it is then necessary to know

pr(H
=

H))(C~) to calculate the critical values. In calculations of Section 3, the function

~tr(H) is a constant equal to ~tr(H))jC~) (since our linear approach is valid near the

onset). This leads to the implicit equation: H)((C~
=

f(~tr(H()jC~))fi(pg~f)~/~ where

f(~tr)
=

fi
The function f(~tr) I.e. H)(jC~ varies rapidly as a function of ~tr.

.
In the thin case, the implicit equation can be written:

~fth"n ~~fth"ck
j~)

~~'~ ~ +
v~

(iii(" ~~'~

where /~r is the relative permeability of the ferrofluid. H)$(~~ is determined by the equa-

tion (2) but note that in equation (8), H)$j~~ is a constant.

The question arises as to when we can reach the asymptotic value vh of the ratio H)((~'/H)(jC~
in order to put easily in evidence experimentally the difference between the asymptotic values of

the critical magnetic inductions. The Langevin's classical theory has been adapted to yield the

superparamagnetic magnetization relationship between the applied field Ho and the resultant

magnetization if of the particle collection. For a colloidal ferrofluid composed of particles of

one size, we have:

if
=

Al~at coth(a)
w

L(a) (9)
°

whith a =

@, where m is the magnitude of the magnetic moment of a particle, L is the

Langevin function; M~at the saturation moment of the ferrofluid and k the Boltzmann con-

stant. When the initial permeability is appreciable, it is no longer permissible to neglect the

interaction between the magnetic moments of the particles [22-24] and equation (9) has to be

modified. We shall consider equation (9) as a good first approximation (while x~ is not much

larger than unity). This leads to the expression of the relative magnetic permeability:

/lr (HO)
"

I + ~j~~L (3)Xi) (~°)

This function of H decreases from ~tr(0)
= x~ + I to I. With the ferrofluid APG 512 A

(x~
=

1.4), solving the implicit equations (2) and (8) results in H((jC~
=

65.2 Gauss and

H)((~'
=

77.0 Gauss. The ratio H)((~/H)((~~
=

i.18 and the difference H))j~'- H))(C~
=

11.8 Gauss. Table IV presents other ferrofluids results: We note that the ratio H)$j~/H)$(C~
increases and the difference H))(~'- H))(C~ decreases as x~ increases. It is better to use a

ferrofiuid with a low value of x~ to put experimentally in evidence the difference between H)$(~'
~~d ~ftfiick

crit

6. Conclusion

We get the dispersion relation of a layer of magnetic fluid of any thickness and viscosity, under

a uniform vertical magnetic field. The critical magnetic field and the critical wavenumber of
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Table IV. Critical characteristics of varioits ferroflwds.

ferrofluid EMG 308 APG 512 A EMG 900

Xi 0.3 iA 4.2

M~at (Gauss) 600 300 900

(Gauss) 299.5 65.2 19.7

(Gauss) 318.2 77.0 25.5

H(~llH()0~ 1.°6 1.18 1.29

H((f (Gauss) 18.7 11.8 5.8

this instability are found to be thickness-dependent. The dispersion equation, simplified into

four asymptotic regimes, enables to explicit the expression of the critical magnetic induction

of a thin film of ferrofluid. Near the onset of the instability, we show that the behaviour of the

ferrofluid may be viscous or completely inertial; the behaviour which is manifested depends on

the characteristics of the ferrofluid (contained in the parameter f proportional to u). In order

to put in evidence experimentally the fact that the critical magnetic induction depends on the

thickness, it is better to use a ferrofluid with a low value of the initial susceptibility Xi
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Appendix

Table V. Physical data of ferroflitids (Ferrojlitidics Corporation).

ferrofluid p (g/cm~)
~f

(N/m)
1/

(mPa s) x~

EMG 507 1.15
r~

0.033 2 0.4

EMG 900 1.74 0.025 60 4.2

EMG 308 1.05
r~

0.04 5 0.3

EMG 901 1.53 0.0295 10 3

APG 512 A 1.26 0.035 75 1A

APG 314
r~

1.2 0.025 150 1.2

APG 067 1.32 0.034 350 1.4
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