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PACS.61.12.Ex Neutron scattering techniques (including small-angle scattering)
PACS.61.20.Ja Computer simulation of liquid structure

Abstract. OIf-lattice Monte Carlo simulations of both the single chain structure factor h(q)
and the inter-chain structure factor HD(q) of flexible polymers in solutions are presented over a

wide range of both wavenumber q and concentration c from the dilute to the concentrated regime,
for chain lengths up to N

=
256. The single chain properties (gyration radius (R(), h(q))

are in

reasonable agreement with the expected theoretical behavior, showing a crossover from swollen

chains ((R()
oc

N~", h(q)
oc

q~~/") to Gaussian chains, and the data comply with a scaling
description, ~&.ith a correlation length ( oc

c~"/~~"~~). However, the inter-chain structure factor

HD(q) disagrees with the corresponding predictions, we find a behaviour HD(q)
oc

q~~ only
in an intermediate range but this is accidental: rather it is found that HD(q) smoothly bends

over from its saturation value at small q to a behavior close to q~4 at q m 1Ii, I being the

length of effective bonds. This failure is traced back to the condition that the la~v HD(q)
c~ q~~

should only be observed for (~~ < q < i~~,
a condition reached neither in the simulation nor

in experiments. lve also compare our results for HD IQ) with the random phase approximation
and find strong deviations.

1. Introduction: A Review of the Problem of the Distinct Structure Factor HD(q)

The structure of flexible polymers in a solution has been a topic of long-standing interest [1-6].
In a dilute solution under good solvent conditions, the single-chain structure factor h(q), which

describes the small angle neutron scattering intensity from (deuterated) chains under wave

number q [3-5], reflects the size of the coil (as measured by its mean square gyration radius

(R() at small q, N being the number of scattering monomers and c their concentration,

cNh(q)
=

cN 1 q~ (R() +
,

q « (R()~~/~ (1)
3

while at larger q it contains information on the "fractal dimension" df
=

1Iv of the chain,

h(q)
C~ q~~~, (R()~~/~ < q « /~~, (2)
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where I is the typical distance between monomers.

In semidilute solutions, where the coils overlap, the chain structure is swollen as in the dilute

case on length scales smaller than a screening length ( only while for larger length scales the

chains behave like ideal Gaussian random walks, i.e.

j 2-1/v

h(q)
~ q~~> lR(l~~/~ « q « f~~> lR() ~

/~ i) N' 13)

while in the dilute case we have (R() oc
/~N~".

This picture of the single chain structure factor as sketched in equations (1-3) has been

analyzed in detail by analytical theory [2, 5], experiment [3, 5] and simulations [7-9].
Of course, at finite concentration the total coherent scattering from a polymer solution

(where all chains are thought to be labelled) contains also parts where monomers belonging to

different chains contrib~te. Denoting the total volume of the system as V, we may define a

total structure function Htot(q) Per monomer as

c~Htot(q)
"

~j i~ (exp [iq (rid rjb))), (4)
~

a,b i, j=I

where rid denotes the position of the i'th monomer of the a'th chain, and the sums run over

all monomers of all chains. In contrast, the autocorrelation function h(q) is defined by the

analogous equation where only differences rid rja within the same chain contribute,

N

C
Nh(~)

" j
~ ~ ieXp j%q jria ~ja)1). 15)

~ ~,J"I

In this work we focus on the part of the scattering in equation (4) due to interference of

monomers from different chains [6]

C~HD(q)
"

~j ~(exp [iq (rid rjb))), (6)
V

~

a,b#a i,j

which is related to the two scattering functions Htot(q) and h(q) trivially by

C~Htotlq)
=

cNhlq) + c~HDlq). Ii)

It turns out that the behavior of HD(q) is much less well-understood [1, 6,10] than that of

H(q). The simplest approach to describe the collective scattering is due to the single-contact
approximation (or random phase approximation, RPA), which yields [4-6]

~2~o j~~
CNhlq)

j~~
t°t i + bcNh(ql'

where b is a constant representing two point interactions. While equation (8) is expected to

be valid in systems with d > 4 spatial dimensions, where excluded volume interactions are

relatively unimportant, it is clear that equation (8) is a rather poor approximation for d
=

3 in

dilute and semidilute solutions (at least for q comparable to the inverse screening length (~~).
In contrast to the large q expansion that results from equation (8), H)~~(a) oc

q~~- const.

q~4, renormalization group theory predicts a next-to leading q~ power [6] (in d
=

3 dimensions)

~ ~2 ~(d+w) lid-I /v)
~~~~

~~~ ~~ q~/"
~ ~~

q~
~ ~~ q~/"+" ~ ~~~
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where
uJ is the correction to scaling exponent [11], and al, a2, a3 are constants. Equation (9) is

believed to hold in the range (~~ « q « /~~, in the semidilute regime ((R()~~/~ « (~~). The

first term on the right hand side of equation (9) is exactly the contribution of the autocorrelation

function (Eq. (2)) and hence the distinct polymer structure function, HD(q) behaves as (cf.
Eqs. (6, 7)), in d dimensions,

c2 Cl~+"J/~~~~~~~
+

,

(~~ « q « ~~~~C~HD(q)
" a2 S + ~~ q2/v+"

While
u m 0.588 is known rather precisely [11-16], the precise value of uJ is still rather con-

troversial: renormalization analyses yield [11-15] uJ m 0.80 + 0.01, while high-precision Monte

Carlo estimates yield [16] uJ m 0.95 + 0.04. Hence the subleading term on the right hand side

scales with wavevector like q~4 ~°
or q~4 ~~, and with concentration as c~.~~ or

c~.°4 Since (
scales as [4, 5] ( II

oc
c~~/l~~~/"J,

we can rewrite equation (10) also as

HD(q) oc q~~[1 + const(q()~~~/"~" + ], (11)

which reiterates the above conclusion that the simple behavior HD(q) oc q~~ (in d
=

3 dimen-

sions)
can only be observed for q( » I.

Thus it is not surprising that an experimental study of this problem is very difficult: first

of all both Htot(q) and h(q) have to be measured separately and in absolute units, in order to

allow the subtraction of both terms in equation (7) to isolate HD(q). Secondly, one has to be

in the right regime, (~~ « q « /~~

Experiments on this problem hence are scarce and not in mutual agreement with each

other. Ullman et al. [10] accounted for their data in terms of the RPA expression (Eq. (8))
which implies HD(q)

oc q~4 rather than HD(q)
oc q~~, to leading order. Jannink et al. [6]

find agreement with the leading term in equation (11), but their q-range on the log-log
plot where they find deviations from the RPA and fit to HD(q)

oc q~~ ranges only from

In(q[A°~ij)
=

In(~~
=

-2.7 to Inqmax[A°~~] m -2.3,
1.e.

only a small fraction (m 0.18) of a

decadel To clearly identify an exponent, one wishes to have at least one decade of q for the fit

on the log-log plot. In addition, the measured screening length ((
=

(15 +1) I [6]) exceeds

the step length of the effective units in poly.styrene (/
m 6 1) only by a factor of 2.5, and

hence the condition (~~ « q « /~~
can never be satisfied in a strict sense. And there are even

further experimental problems (subtraction of incoherent background, effects of polydispersity,

etc. [6]).
Following a suggestion of Jannink [17j, we attempt here to study HD(q) by Monte Carlo

simulations, since the simulational approach should be ideal here:

(I) both h(q) and HD(q)
can be estimated directly and independently from the simulation

configurations in a fairly straightforward way, and while the experimental q range is rather

limited (the experiment [6j only had about a decade at its disposal, 9A x
10~~ A°~~ < q

< 10~~), this limitation is less present in the simulation (see Figs. 5, 6 below where the

structure factors are presented for two decades of q rather than only one).
(ii) There is no incoherent background, no problem with a finite instrument resolution, no

polydispersity (of course, we do not at all imply to criticize the experimental procedures applied

in reference [6] to deal with these matters: we only imply that in our simulations we need not

consider them at all).
(iii) Supplementary information (e.g. gyration radii, screening lengths, correlation functions

in direct space, etc.)
can be obtained from the same simulation.

However. as we shall see there is one major disadvantage of simulations that offsets to a large

part the above advantages: this is the fact that for multichain system simulations at semi-dilute
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solution conditions of only relatively short chains are possible. While for single chain studies

it is now possible to generate and analyze self-avoiding walks, up to 80 000 steps [16], we have

to restrict the present study to a chain length of N < 256 effective monomers: unlike also the

experiment [6] for which N is of the order of104, and the gyration radius ((R()~/~ m 300 I [6])
is about 20 times larger than the screening length (, we are forced to work under conditions

where (R()~/~ is only a few times larger than (, and also ( is only a few times larger than /.

Thus the simulation must have the problem that the observation of HD(q)
oc q~~ is hampered

both at small q la crossover controlled by q(R()~/~ sets in if this variable is no longer very

large) and at large q (where corrections of order (q()~~~/"~"
m (q()~~.~ are expected (cf. Eq.

(11)). Thus the conclusion of the simulations on the validity- of equation (11) is also only
preliminary. Nevertheless we describe here our results in detail, since to our knowledge the

present ~vork is the first simulation study of HD(q), and it yields interesting insight into the

deviations from RPA.

One may ask whether it would be better to study rather a few very long chains in the dilute

regime, rather than working mostly under semi-dilute conditions as we have done. We have not

attempted to study< very dilute cases, because then the "relaxation time" to equilibrate long

range concentration fluctuations becomes prohibitively large, and only if these fluctuations are

well-equilibrated is our HD(q) accurate enough. Also the statistical accuracy becomes worse

in the dilute regime since the "events" contributing to HD(q) scale like c~ while the simulation

effort scales like c and thus for c ~ 0 the "signal to noise" ratio becomes unfavorable, as in

the experiment.
In Section 2, we briefly summarize the off-lattice bead-spring type model [8,18,19] on which

the simulation is based, and discuss some pertinent details of computation and analysis. Sec-

tion 3 summarizes our results
on

the single-chain properties, (R() and h(q), and estimates off
based on these quantities. Section 4 discusses the collective scattering, analyzing both HD(q)
and the extent to which the RPA can describe these data, while Section 5 summarizes our

conclusions.

2. The Off~Lattice Bead Spring Model, and Some Comments on the Monte Carlo

Techniques Used for the Present Simulations

Each chain consists of N effective monomers, using N
=

32, 64, 128, and 256. These beads

are connected by springs which are given by the FENE potential (finitely extensible nonlinear

elastic potential), where the bond length I lies in the range im~n < I < im~~,

UFENE(I)
=

K(imax to )~ ln [1 (I to )~ /(imax to )~j (12)

The minimum of this potential occurs for I
=

to, UFENE (to)
=

0, and near to it is harmonic,
with lit being the spring constant. However, this potential diverges to infinity both ~&.hen

I ~ /m~n
=

2io imax and when I ~ imax. ~Ve choose the parameters as imin
=

0.4, to
"

0.7,
/max

=
(this is our unit of length), and K/kBT

=
40. The chains are treated as being fully

flexible, and thus neither bond angle potentials nor torsional potentials are included: e~.erj:
effective bond is thought to represent n m 3 6 successive chemical bonds along the backbone

of the chain, I.e. to is of the order of the persistence length.
As nonbonded interaction we use the Morse potential

UM(~)/EM
"

~XPI~~~(~ ~min)1 2 ~XPI~°i~ ~min)i i~~)

with parameters rm;n =
0.8; o =

24 and EM =
1 (we choose units such that Boltzmann's

constant kB + 1). For this model it is known that the Theta temperature occurs at 9
=

0.62
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[19], and working at T
=

1 we hence are well within the good solvent regime. The particular
advantage of this Morse potential is that it is very short-ranged and hence a link-cell algorithm
with a cell size of unity can be used. We simulate then systems of size L x L x L with periodic
boundary conditions, choosing typically L

=
32 (only for the dilute system with c =

0.125

and c =
0.25 linear dimension L

=
64 was used for the sake of better statistics). Monomer

concentrations studied were c =
0.125. 0.25. 0.50, 0.75, 1.0, 1.5 and 2.0 (note that with our

choice of units of length the range 1.5 < c < 2.0 corresponds to dense polymer melts [8,18,19] ).
Thus our systems are large enough so we have at least N

=
128 chains in the system, to avoid

trivial finite size effects [9]. Note that due to the periodic boundary conditions, HD(q)
can be

calculated only for discrete q vectors given by q =
(21IL) (v~, uy, uz) where the ua are integers

in the range from 1 < ua < L. However, this discreteness of reciprocal space is a limitation for

very small q only, a region that is not of interest here. In the following, we measure q in units

of 1IL.
The structure factors h(q), HD(q) in our system are calculated by using the corresponding

radial distribution functions. Performing a spherical average over the direction of q, equations
(5), (6) can be written

~~ ~ ~ ((f
( sinjqj na in

~~~

~ ~ ~ ~ L~ ~~~ ~~ ~=l m>n ~ ~ ~

the rime on the
ontribute (a # fl).

We now the ummations
onomer

indices
in (14), by an integra-

tion ver r = )run - r~nn) or r =
)rna

- ~np), spectively; because
of the periodic

conditions
it does not make any sense to

onsider distances
r > L

/2, and

thus
these integrations

are
cut off

at he half inear dimension
of

the
Noting

h(q)

=

o~~~
qr
Gs

jr)

Similarly
~

D(q)

"

/ qr
where

GD(r)
is the radial density istribution

function of monomers
belonging to

chains. In the hermodynamic limit, equation (17)
roduces

a delta unction at q =

fact reates difficulties with
the umerical integration of equation (17) for

finite

L.
it is necessary to split the integral°in two parts using r~GD(r) =

r~[GD(r)
- 1] + r~, noting

that the ntegral f

HD(q)
"

41
~~~

r~[GD(r) -1] ~~~~~dr. (18)
o qr

The total radial distribution function G(r)
=

Gs(r) + GD(r)
can also be used to estimate the

correlation length, from the standard formula

(~
=

/
r~[G(r) 1]r~dr/ /~ [G(r) ljr~dr. (19)

6

~
o~
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Fig. 1. log-log plot of the mean-square gyration radius of (R()
us.

the number of bonds N -1

for four concentrations c as indicated. Straight lines indicate power laws (R()
c~

N~"off with effective

exponents as quoted in the figure. Statistical errors of (R()
are smaller than the size of the symbols.

This formula is difficult to use in practice in our case, since statistical errors at large r cause

rather erratic contributions to the integral in the numerator. Thus we have used the following
procedure, where we first split off the intra-chain part and integrate GD(r) only up to a cutoff

Lo, while for
r > Lo we integrate an exponential fit Aoexp(-r/(o) Performed in the region

2 < r < Lo, where the statistical errors of GD(r)
are still not too large:

Lo m

(R() + 41
/ r~ [GD (r) 1]r~dr + 41Ao

/ r~ exp(-r/(o)dr
j2

~

0 Lo j~~)
6 Lo

m

(N 1) + 41 [GD (r) 1]r~dr + 41Ao r~ exp(-r/(o)dr~o

Finally we note that the Monte Carlo algorithm used is the same as in previous work [8,18,19],
I.e. monomers are chosen at random and one attempts a move to randomly chosen new

coordinates r' in a cube of linear size A
=

1 centered around the old coordinate. From equa-

tions (12, 13) one computes the change in potential energy AU and the transition probability
W

=
exp(-AU/T), applying the standard Metropolis criterion [9]. For dilute systems, this

algorithm has an acceptance rate of about 15%, which however decreases to the one percent

range for dense melts.

3. Single Chain Properties

As pointed out in Section 1, it is crucial to examine HD(q) in the right regime of wavevectors

and concentrations. To find this regime, we have to analyze single-chain properties first.

Figure 1 shows some of our data for ill(
vs. N 1 on a log-log plot. It is seen that in the

dilute case (c
=

0.125) the data are compatible with a power law (R() oc
N~" with u m 0.58,
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Fig. 2. log-log plot of (R()/(N -1)~"
us.

c(N -1)~"~~, for concentrations c in the range

0.125 < c < 1, as indicated, using data from N
=

16 to N
=

256 (the latter size is available only for

0.25 < c < 0.75). Full curve is a tentative estimate of the scaling function, asymptotic slope of the

scaling function, -(2u 1)/(3v -1) m -0.23, is indicated by the dash-dotted line. Note that data

for c =
1.0 deviate from the crossover scaling function already systematically (diamonds connected by

broken curve).

close to the theoretically expected value. With increasing concentration the crossover towards

Gaussian behavior shows up in a gradual reduction of the "effective exponent" vein which has

reached the Gaussian value u =
0.5 for the dense melts. Note that the data for (R() are

not obtained from a "Zimm plot" but are directly calculated from the configurations of the

polymer chains invoking the definition (R()
=

)£$ ~((r~ Rcm)~), ri being the coordinate

of the i'th monomer of a chain and Rcm its centre of mass coordinate. Since for the present

range of N in Figure 1 there are still some effects of corrections to scaling to the asymptotic

power laws to be expected [16], one should not take the deviation of our value
u m 0.58 from

the theoretically< expected one
[5,11,16]

u m 0.59 seriously.

Of course, a more sensible presentation of this crossover is possible by carrying out a scaling
analysis, I.e. we plot (R() /(N -1)~"

us.
c(N -1)~"~~ using the theoretical value of

u =
0.588

[5,11] (see Fig. 2). It is seen that the Monte Carlo results for 0.125 < c < 0.75 are reasonably
well consistent with the crossover scaling description, while data for c =

1.0 (I.e. half the

monomer density of a dense melt) fall systematically below the scaling function (data for

c =
1.5 and c =

2 would fall even further below and clearly are outside the crossover scaling
regime).

From Figure 2 we can estimate the overlap concentration c*, where a
significant decrease of

the chain linear dimensions sets in, as c* (N -1)~"~~
=

20. This yields c* (N
=

128) m 0.494 and

c* IN
=

256) m 0.290. Thus we see that chain lengths N > 128 and concentrations c > 0.5 are

required, in order to work in the semidilute regime. On the other hand, c < is needed since

for c > 1 the solution is already too concentrated, so that clearly we cannot reach semidilute

concentrations for which c/c* is large (unlike the experiment where c/c*
=

17 is quoted [6]):
this would require to simulate much longer chains, which is impossible for the present model

(and simulation technique).
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Of course, there is some arbitrariness in this estimation of the prefactor in the relation for

the overlap concentration, c* oc (N 1)~l~"~~J An alternative estimate of c* is based on
the

approach where one uses the spherical volume associated with the gyration radius in the dilute

limit, (R())~$, assuming that at c =
c* the overall concentration is equal to the density inside

this spherical volume, p =
NIV

=
3N/(4~(R()~/~). Since (Fig. 2) (R() m 0.11 (N -1)~",

we

obtain c* m 6.54 (N -1)~l~"~~J, I. e. a three times smaller prefactor. Using the latter estimate

of c* and the concentration dependence of the screening length [4, 5]

~(~) ~-v/(3v-1)
_~

~-0.77 (~i)
0 -~ 0

to equate ((c*)
=

(R()~/~, we obtain to QS 1.38, I.e. tic
=

0.25) m 4.01, ((c
=

0.5) m 2.35 and

tic
=

0.75) m 1.72. Since in our (fully flexible) model the effective bond length I is roughly
equal to lo

"
0,7, we see that the simulation has the same problem as the experiment, namely

the range from I to ( is rather limited land this fact makes the test of Eq. (11) difficult, see

Eq. (10)).
Next we turn to the single chain structure factor h(q) (Fig. 3). It is seen that in both

the dilute case (Fig. 3a) and in the melt case
(Fig. 3b) the theoretically predicted behavior

(Eqs. (2, 3)) is readily verified; in the semidilute case (Fig. 3c) the crossover shows up in terms

of an intermediate value vein m 0.55 for the effective exponent in a power law h(q)
oc q~~/"off,

compatible with the N-dependence of (R() (Fig. 1). It is gratifying that the region where the

power laws are observed is not as severely restricted as written in equations (2, 3): it is enough
that q exceeds the lower limit by about a factor of 1.5 to reach the region where the power law

holds, and on the upper end q2 (given by the inverse bond length lo both in the dilute case and

in the melt) the condition q < q2 is not serious at all, I.e. one even may exceed q2 by a factor

of 1.5. On the other hand, in the semidilute case the inverse screening length (~~ (related to

q~, Fig. 3c) and (R()~~/~ are too close together, and at q £ j the saturation of h(q) according
to equation (1) is already a little bit felt: thus we are unable to verify the classical behavior

h(q)
oc q~~ in the semidilute regime (simply because our available chain lengths are still far

too short). This point is examined further in Figure 3d, where a plot of q~h(q) is given for

c > 0.5. It is seen that for c > 1 there is an essentially horizontal part in the q-range from

q m 0.9 x
10~~ to q re 4 x 10~~, while for

c =
0.5 this horizontal part is shorter, ranging only

from q m 0.9 x
10~~ to q m 1.5 x 10~~, because now q~ lies in this range. But the available

q-range clearly is too small to identify both regions with u =
0.5 and

u =
0.59 here. Therefore,

the data for h(q) are not well-suited for extracting an estimate for tic), unlike a related study
of the bond fluctuation model iii.

Finally we turn to our attempts to directly extract the concentration dependence from the

pair correlation function Figure 4, as given in equations (19, 20). The numbers obtained in

this way are tic
=

0.25)
re 1.23, tic

=
0.5)

m 1.12, and tic
=

0.75) m 1.05. These numbers

are significantly smaller than the above estimates quoted after equation (21). On the other

hand, there is better agreement with the estimates (o(c
=

0.25)
m 2.5, (o(c

=
0.50) m 2.2,

to (c
=

0.75) QS 2.1. However, it was found that both estimates for to increase somewhat when

one repeats this analysis for N
=

256 instead for N
=

128. Thus he accuracy of this direct

estimation of ( seems to be rather uncertain.

4. Simulation Results for the Inter-Chain Structure Function HD(q)

Typical data for the various structure factors are given in Figure 5. Note that for large q the

total structure factor and the intrachain structure factor coincide, because there the correction

due to inter-chain contributions is negligible. For c ~ 0, equation (7) implies that
~ Htot(q)
N
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Fig. 3. log-log plot of the normalized single chain structure factor h(q)
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than 2m/L), a) for the case c =
0.125, L

=
64, N

=
128 and b) the case c =

2.0, L
=

32, N
=

128.

Arrows show qi =
(2m(R()"~)~~ and q2 =

(2mio)~~, and the horizontal bar indicates the range over

which equation (2)
or equation (3) is fitted to the data. c) shows the case c =

0.5, L
=

32, N
=

128

and includes also the wavenumber q~ =
(2m()~~, using the estimate (

=
2.35 quoted in the text.

d) log-log plot of q~h(q)
us. q for four concentrations, as indicated in the figure.

(the quantity that is actually plotted) coincides with h(q), the single chain structure factor. We

see that even for the dilute case, c =
0.125, where for N

=
128 (R()~~/~ and ( are comparable

(Eq. (21) would predict (
=

6.84, while (R()~~/~
=

5.61) the deviations of
~ Htot(q) from
N

h(q) for small q are already quite large. The larger the concentration the more pronounced
does this deviation become. A similar concentration dependence of Htot(q) is also well-known

experimentally (e.g. Zimm [20]).
In order to work out the RPA, we note from equation (8) that the "constant" bcN can be

expressed as follows

bcN
=

iiHiot(ail
~ h~ (~i ~~~~

In reality, equation (22) will not be exact, and the left hand side of this equation will be
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Fig. 4. Semi-log plot of1- GD(r)
us. r, for N

=
128 and four concentrations as indicated. Straight

lines show fits Ao exp(-r/fo), -Ao being the intercept at the ordinate, and -1/(o is the slope quoted

in the figure, choosing Lo
=

8 here.

q-dependent. To avoid this problem, we define bcN as the limit of equation (22) resulting for

q ~ 0 from our simulation data. The resulting constant is then used for the RPA expression
for HD(q), namely

~~~~~~ l~~~~~~ql' ~~~~

that has been computed from the single-chain structure factor h(q) as observed in the sim-

ulation, and is included in Figure 5. Due to this procedure, there is trivially an agreement
between the actual inter-chain structure factor (c/N)HD(q) and the RPA result (Eq. (23))

for q ~ 0, but apart from this constant there are no other adjustable parameters whatsoever

involved in this comparison.
While in the dilute case (c

=
0.125) the RPA predicts a decay of the inter-chain structure

factor which is too slow for large q, the behavior is opposite for the semidilute case: for

q > q2 "
(21/o)~~ the actual inter-chain structure factor HD(q) is larger than the RPA

prediction: this deviation goes in the same direction as was observed in the experiment of

Jannink et al. [6]. Note that the behavior for c =
0.5 is similar, and also the behavior of the

longer chain length (N
=

256) is similar.

Should we attribute these deviations form RPA then to the prediction HD (q) oc
q~~ (Eq. (11) ),

as done in reference [6]? To analyze this problem, Figure 6 gives a slightly enlarged view of

HD(q) alone, for N
=

256 and the three concentrations c =
0.25, 0.50, and 0.75, which one

might consider as candidates for this analysis. To emphasize that we are working in a useful

range of wavenumbers, the estimates for qi "
(21(R())~~, q~ =

(21()~~ and q2 "

(21/o)~~
are

shown by arrows.

While the single chain structure factor (Fig. 3) did show a very good power law around q2,

this is clearly not the case here. Slopes at q =

10~~ and at q2 are emphasized by straight lines,
and even larger effective exponent close to minus four results for q > q2, but it is clear that

these numbers do not have any particular significance, since they strongly depend both on c
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Fig. 5. log-log plot of various structure factors (denoted symbolically as
S(q))

us. q (in units of

1/L), for N
=

128 and two concentrations: c =
0.125 (al and c =

0.75 (b). Both the intra-chain

structure factor h(q), the inter-chain structure factor HD(q), the total structure factor H(q) and the

RPA-inter-chain structure factor °HD(q)
are included. Note that a factor c/N has been absorbed in

the normalization of the total and inter-chain structure factors.

and on q. Again slightly different numbers result for the smaller chain length, N
=

128, but

since there q~ is somewhat closer to qi, some residual influence of the finite gyration radius

is to be expected. In Figure 6d ~ve compare HD IQ) for N
=

64, for N
=

128 and N
=

256

and c =
0.5 to show that in the relevant q range a N-independent structure factor is indeed

obtained,
as it should be in the semidilute concentration regime: hence one cannot discard our
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=

256 and four concentrations:

c =
0.25 (a),

c =
0.50 (b),

c =
0.75 (c) and c =

2.0 (e). Dots are Monte Carlo data, while broken curves

show the RPA result. Full and dash-dotted straight lines indicate possible power law fits at q =

10~i

and q = q2, respectively. In part id) the structure factor HD(q) is compared for three different chain

lengths, using
c =

0.5.

data on the grounds that our chain lengths are too short for the studied concentrations. Thus

our conclusion is that our data cannot be taken as evidence for equation (11), simply because

there is no extended range of q for which a power law can be observed. On the other hand,

we cannot really claim that our data prove that equation (11) is incorrect, however: it is clear

that in the simulation the condition I « ( « (R()~/~, where "<" means a difference of more

than an
order of magnitude, is not satisfied, and thus smooth crossovers between the different

regimes mask any possible power laws. In the experiment of Jannink et al. [6], the condition

I « j is not satisfied either, and hence the good agreement with equation (11) reported in

reference [6j seems to us some~&.hat surprising. For the melt case (c
=

2.0 in our units),
on the
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Fig. 7. log-log plot of the quantity bcN defined empirically by equation (22), for N
=

128 (al
and N

=
256 (b). If the RPA were valid, all data should coincide with the corresponding horizontal

straight lines shown.

other hand, one finds the expected behavior HD(q)
oc h(q)

oc q~~ over a wide range. Also the

RPA is much better now.

To highlight the deviations fi.om RPA, we plot the quantity bcN defined in equation (22)

us. q (Fig. 7). It is seen that systematic and pronounced deviations from RPA do indeed

occur.
While in the dilute case these deviations fall below the straight line for intermediate

values of q, the deviations fall above the straight line for larger concentrations. Thus there

is a
concentration where for a rather large range of q the RPA happens to be rather good
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Fig. 8. a) log-log plot of HD(q)
us. q, comparing for N

=
128 four concentrations, c =

0.125, 0.25,

0.5 and 0.75. b) Expanded part of a
HD(q)

us. q plot, for c =
0.25 and N

=
256, showing that a fit

to q~~ is possible if the q-range is restricted enough.

(c
=

0.25 for N
=

128, in the crossover regime from dilute to semidilute concentration), but

this of course is an accidental cancellation of these opposing tendencies. For q > q2 the data

always fall below the RPA prediction.

5. Discussion

While we have obtained clear evidence that the RPA is a very unsatisfactory description of

collective scattering from either dilute or semidilute solutions, we have not been able to clearly

attribute the cause of these deviations to the corresponding theoretical prediction (Eq. (11)).
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We summarize the problem by presenting a comparative plot of HD(q) for a wide regime
of concentrations in Figure 8a: for semidilute concentrations, HD(q) on the log-log plot is

continuously curved, and thus there is clearly no extended q-range where HD(q)
oc q~~ holds.

For the more dilute case, c =
0.125, there is a rather broad regime where a simple power law

seems to hold, but the exponent is wrong. HD (q) oc q~~ ~~ rather than q~~. Possibly, this is due

to the competing effect of a correction term with a larger exponent, but this is not clear from

the data, in particular since we can no longer measure HD (q) accurately when it is numerically

very small, obviously there are problems with statistical noise in the data for HD(q) « 10~~

On the other hand, there is not a real discrepancy with the experimental findings of reference

[6j: when we look at HD (q) over a q-range similary restricted as in the experiment for values of

q where the RPA just has begun to deviate strongly from the data, we can see a very limited

region where HD(q)
oc q~~ seems to be compatible with the data (Fig. 8b). In fact, Figure 8b

has
a clear similarity with the corresponding Figure 2 of reference [6] (note, however, that the

RPA in our case is not a best overall fit to the data, but simply fits only the limit q ~ 0,

and thus discrepancies with the RPA are larger in our case). Although, Figure 8b is so similar

to the experiment [6], ~&.e do feel that it is no evidence for equation (11), in view of the more

extended data shown in Figure 8a. Despite a large effort in computing time, clear conclusions

whether equation (11) applies or have not emerged. A possible reason for this failure, of course,

is that the conditions I « ( « (R()~/~ must be stringently satisfied, in order that equation
(11) is applicable. On the other hand, the experiment [6] that motivated our study could not

satisfy the condition I « ( (and hence study the regime q( » 1) either. Clearly, our simulation

technique restricts us to study much shorter chains than experimentally. However, one should

have expected that in the regime c » c* the chain length is no longer very important, so it ~&.as

not a priori clear that the chain lengths accessible to simulations are too short to clarify this

problem. On the other hand, we study a much larger range of q and several concentrations,
and thus our conclusions are not just based on a single log-log plot over a rather restrictive

q range (Fig. 2 of Ref. [6]) as the experiment. In view of this situation, more extensive work

(both experimentally, theoretically and with simulations)
seems to us necessary, before one can

say that the nature of correlations in polymeric solutions is understood.
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