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Abstract. For a t~vo-dimensional model of pattern formation the interplay between a broken

up down symmetry and a weakly broken rotational symmetry is investigated. Both symmetries

may be broken, for instance, in chemical reactions with an applied electric field or in thermal

convection of planarly aligned nematic liquid crystals. In a system with rotational symmetry
and

a
broken up down symmetry hexagonal patterns are favored in a certain parameter range.

With increasing values for the anisotropies, by keeping the up down symmetry broken, hexagons

may be deformed to centered rectangular patterns. Hence, breaking both symmetries is an al-

ternative mechanism leading to rectangular patterns. Finally, at larger values of the anisotropies

a bifurcation to stripes takes place.

1. Introduction

Competition between different patterns occurs in many systems far from thermal equilib-
rium [1,2]. Two examples are chemical reactions [3] or Rayleigh-BAnard convection [4,5]
where transitions between striped patterns and hexagons have been observed. Both are ex-

perimentally well-controlled systems and the understanding of the hexagon-stripe transition

has reached a quantitative level [3,6-8]. Besides these systems, which are isotropic in a plane,

there is another class of two-dimensional extended systems with a broken rotationalinvariance.

Thermal convection and electroconvection in planarly aligned nematic liquid crystals have an

intrinsic anisotropy and belong to this class. During the recent decade both systems have been

extensively investigated [9,10].
It is an interesting and open question which kind of effects may be expected if the up-

down and the rotational symmetry are broken simultaneously. Here ,ve investigate for a model

system this question by varying the parameters of the anisotropy and the coefficient ruling
the up-down symmetry breaking. For

a
broken up-down symmetry it will be shown how

increasing values of the anisotropy parameters deform hexagonal patterns into rectangular like

patterns. Both symmetries might be broken in chemical reactions where hexagons occur and

1v.here the isotropy is broken simultaneously by an external ac electric field [11-13]. Another

example is thermal convection in planarly aligned nematic liquid crystals. It is an anisotropic

pattern forming system (see e.g. [10.14] and Refs. therein) and the up- down symmetry might
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be broken in the so-called non-Boussinesq regime or by a pretilt-angle between the nematic

orientational order and the confining boundary.

2. Model Equation

l§'ith the Swift-Hohenberg equation a model is kno«.n that describes periodic patterns in

two-dimensional isotropic systems and essential features of thermal convection near onset [15].
This model is invariant with respect to rotations and changes of the sign of the field. Later

on, this model has been extended by adding a quadratic nonlinearity which removes the +

symmetry [16] and which mimics in thermal convection the sc-called non-Boussinesq effects

[4]. By another extension the rotational invariance is broken and describes some features of

pattern formation in anisotropic systems, such as convection in planarly aligned nematic liquid

crystals [17]. The interplay between a special form of the anisotropy and the broken up-down

symmetry has been considered, too [18,19]. Here we generalize these models by combining the

general anisotropic formulation with a quadratic nonlinearity:

0tu
= (e (q( + V~) ju + bu~ u~ + 2(a10( 020)0()u. (1)

~

The rotational symmetry is broken for ai # 0 and the up down symmetry, u ~ -u, is broken for

a non-vanishing coefficient in front of the quadratic term, b # 0. One might imagine additional

gradients in the nonlinearities, such as in the Kuramoto-Sivashinsky equation [20, 21], and such

terms might be anisotropic too. Since we are only interested in a few qualitative aspects of

the interplay, between both broken symmetries, we do not take into account such additional

anisotropic effects.

3. Threshold

The stability of the basic state, u e 0, is investigated with the ansatz u =
F exp[lt+ I(qx+ py)]

(F « e). Above the neutral curve, eo(q,P), the grolv.th rate Re(I) becomes positive,

eolq, P)
=

lql q~ P~)~ + 2aiq~ + 2a~q2p2, j2j

and the basic state becomes unstable. This neutral surface eo(q,P) has extrema at

q)
=

q( al, PC =
0 with ec(qc, pc =

0)
=

2aiq( a( and at qc =
0, pc = qo with

ec(qc
"

0, pc =
1)

=
0. For a2 "

0 and I > al > 0 (al < 0) the first extremum corresponds
to a saddle (global minimum) and the second one to a global minimum (saddle) of eo(q, P). If

a2 > 0 the saddle changes to a local minimum. For -1 < a2 < 0 and al > a2/(1+ a2) the

global minimum of the neutral surface eo is at

~
~ ai (1 + a2) q(°2

(3)q)
= °~~))~~)j2 ,

PC
l (1+ °2)~

and one has the so-called oblique roll instability [9,10,17, 22]. The previous two extrema at

qc =
0, pc = qo and qc =

q( al, PC =
0 become saddles.

4. Weakly Nonlinear Behavior

The behavior of periodic solutions with constant complex amplitudes, Ai, may be investigated

near
threshold with a three-mode ansatz of the following form [3, 4,7)

u(x,y,t)
=

Al e~Q~ + A2e~~2~ + A3e~~3~ + cc., (4)
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(cc.
=

conj. complex and r =
(x, y)). The wave vectors q2,3 are defined as

q2,3 "

~ l, +vi(I + P)) (5)

For P # 0 the solution (4) corresponds to a slightly deformed hexagonal pattern [3). If only

one of the three amplitudes Ai is excited, equation (I) describes a stripe pattern.
With the scaling of the amplitudes Aj cc

e~/~ and of the nonlinear coefficient b
cc

e~/~ the

following set of coupled equations can be derived from equations (1) [4, 7]

~°'~l ~la~l + 2b~~~( /(-~l)~l, (6a)

~~~~2 flb~2 + 2b~~~( /(~2)~2
,

(6b)

~°'~3 ~lb~3 + 2b~~~~ /(~3)~3
,

(6C)

with the abbreviations

flAi)
" 'f Ai ~ +P~j

A3 ~~' 17~l

J#t

'f #
3, p "

6,

i~a = e (q(
~)~ 2aiq~, (7b)

~~ ~

~~
~~ ~ ~~~ ~

~~~~ ~

°~~~~~ ~ ~~~ ~~ ~ ~~~ ~~~~

Equations (6) can be derived from a potential

0tAi
=

~~

,

(8)
To bA]

with

7h
=

/
dzdy ~j '~ Ai ~

-i~a Al ~

~
i=1,2,3

~

~Jb
A2 ~ + A3 ~ (9a)

2b (Al A2A3 + A(A]A(

+ P~ ~l ~
(~

~2 ~ + ~3 ~~)+ ~2 ~~ ~3 ~ )j

For a hexagonal pattern the amplitudes are all equal, Ai
=

A, and A takes for qi ~= qo

the form
~

A
=

b
+ (b~ + e(+~ + 2p))

/ +~
+ 2p) (10)

The potential (9) per unit area, fl, reduces for hexagons to

fl
= (( (~t + 2p)A~ 3~A~ 4bA~j

Iii)

If ~la # qb then equations (6) still have constant amplitude solutions with unequal amplitudes,
Al # A2

=
A3. Those resemble for Al < A2, A3 a rectangular pattern (cf. Fig. 4b) and for

Al > A2, A3 the patterns resembles a slightly deformed hexagon (cf. Fig. 4c).
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Fig. I. Along the solid line the functional F for the three-mode solutions of equations (6) vanishes

at threshold ec =
0 (cf. Eq. (9)). For values of al and b from the shaded region there is a finite

range for e where the three-mode solution is favored. In the unshaded range single mode solutions are

always preferred beyond threshold (a2
"

0).

5. Results

Hexagonal patterns bifurcate subcritical [4], as can be seen from equation (10). Thus the

amplitude A is already finite at threshold, ec =
0. The functional F with A from equa-

tion (10) is negative at threshold, ec, and thus lower than F for the basic state, A e 0.

For b~ c~
e~/~ < 28/39 stripes bifurcate supercritically, what we always assume throughout of

this work. Hence the functional F for stripes vanishes at threshold and hexagonal patterns

(cf. Fig. 4) are preferred in a finite range beyond threshold. For increasing values of e the

functional F for stripes decreases faster than for hexagons and above a critical value for the

control parameter eb (eb > ec) single mode solutions have the lowest value for the functional

and are preferred [4, ii.
In anisotropic systems, such as in electroconvection in planarly aligned nematic liquid crystals

[9,10j, hexagonal patterns are not met. According to this observation we expect that for large
values of the anisotropic coefficients ai hexagons are suppressed in our model.

At finite values for the anisotropic coefficients ai the bifurcation point eb will be reduced and

the linear coefficients ~a and ~b in equations (6) as well as the constant solutions are unequal,
Ai # A2

=
A3.

If the functional (9) vanishes at threshold for three-mode solutions and for a certain subset

of parameters, jai,a2,b), then one has eb =
0 and stripes are preferred beyond threshold.

Accordingly the condition F(e
=

ec)
=

0 for the three-mode ansatz or eb =
0 provides a curve

in parameter space (b, oi, 02) which separates the range with preference of stripes from that

where hexagons are favored at least in a finite range of e.

If 02 #
0 is kept fixed then from the condition F

=
0 for the three-mode ansatz the critical

values arc, at which the transition between three-mode solutions and stripes takes place, can

be calculated as function of the nonlinear coefficient b. The two curves
oic(b)

are drawn

in Figure I and for parameters from the shaded region between both curves the three-mode

solutions are
favored in a finite range of e. Keeping b

=
0.5 fixed, then with the same condition,

F
=

0, the values for the parameters ai, a2 can be calculated where the three-mode solutions

exist in a finite e-range too, cf. shaded region in Figure 2. Beyond the shaded range in

Figure 2 single mode solutions of equation (6) are always preferred. During the calculations
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a~

-o.io -o.05 o o.05

a~

Fig. 2. For parameters a, from the shaded area there is a finite range for the control parameter

e where the functional (9) takes its absolute minimum for a three-mode solution of equations (6).
b

=
0.5 is fixed.

for Figures 1-3 the functional F has been always minimized with respect to the wave numbers

q and P, however, minima of F stay always rather close to q = qo and P
=

0, respectively.
Depending on the parameters,, al, a2 and b, the three-mode solutions of equations (6),

A, # 0, correspond to hexagons for al = a2 =
0 (cf. Fig. 4a), to deformed hexagons for

AI > A2
=

A3 (cf. Fig. 4c) or to a centered rectangular pattern for Al << A2
=

A3 (cf.
Fig. 4b). In Figures 4a-c the control parameter e =

0 was fixed and for Figure 4d e =
0.I was

chosen. At the values e =
0.I, b

=
0.5 and a2 =

0 one obtains for al #
0.I stripes parallel to

the x-axis (horizontal) and for al =
-0.I stripes parallel to y-axis, as indicated by formula

(3). In Figure 4d al is continuously ramped along the z-axis from al =
0.I at the left to

al =
0.0 in the middle and to al =

0.I at the right. According to this ramp hexagons and

stripes coexist, similar as in experiments [23] and for a previous model [24, 25]. The bending
of the stripes near the transition to hexagons in Figure 4d is a further remarkable feature.

Figure 3 shows for a three-mode solution the variation of the ratio Al /A2.3 as function of al

and for a
fixed value b

=
0.S. The solid line in Figure 3 corresponds to a2 =

0 and the dashed

line is calculated for 02 =
-2ai These two curves give an impression over which range the

ratio AI /A2.3 is varying for parameters from the shaded region of Figures I and 2.

Rectangular patterns occur, for example, in thermal convection in planarly aligned nematic

liquid crystals [14, 26] or under spatial forcing [27]. A rectangular pattern can be described

by a superposition of two-straight rolls enclosing a
finite angle in between. The amplitudes

of both modes obey two coupled equations, 01Ai,2
=

Is ~ Ai,2 j~ -p A2,1 j~)Ai,2, as can

be obtained from equations (6) with A3
=

0 and b
=

0. The coexisting solution of these two

coupled equations, Al
=

A2 # 0, requires for stability the condition p < i
Calculating for specific systems the amplitude equations for two interacting modes, then one

obtains quite often for the nonlinear coefficients the inequality p > ~. For this inequality the

two mode solutions are unstable and only one mode survives. Figure 4b shows a solution for

the parameters
=

0.S, al =
0.05 and a2 =

-0.094, which resembles a centered rectangular
pattern similar as one obtains for a superposition of two periodic solutions, e-g- A2

"
A3,

AI
=

0. However, the solution given in Figure 4b is a three-mode solution cf. Eq. (4)) with

large amplitudes A2 and .43 and a small amplitude AI with a ratio of about Al /A2
=

0.073.

In addition we have for
our model still p > ~. In spite of having p > ~, a broken up-down

symmetry, b # 0, can still favor rectangular like pattern by exciting a third mode, AI In this
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Fig. 3. For three-mode solutions (4) the ratio ) between the amplitudes AI and A2,3 is shown

as function of the anisotropies ai,2 and for b
=

0.5. Along the solid curve al is varying and a2 =
0 is

fixed and the dashed line describes the ratio, ), along the curve a2 =
-2ai

a) b)

c) d)

Fig. 4. The spatial structure of patterns deqcribed by three-mode solutions of equations (6) for

a
fixed ~,alue b

=
0.5 and different anisotropies: a) ai = a2 =

0, b) oi =
0.05 and a2 =

-0.094,

c) ai =
-0.022 and n2 =

-0.02. Part d) shows a structure with ai varying along the horizontal

direction (similar as in Ref. [13]). In a)-c)
e =

0 was fixed in d)
e =

0.1 has been chosen.



N°4 DEFORMED HEXAGO~TAL PATTERNS 683

case the small amplitude AI serves for a coupling of the two strong modes A2
"

A3 to form

a rectangular pattern. This mechanism for stable rectangular patterns is rather different from

the common case, however, it might be not easy to discriminate between both mechanisms in

experiments.

It is therefore an interesting question whether experimental observations of rectangular pat-

tern correspond always to a bimodal structure or to a three-mode solution with a small third

mode (requiring a broken up-down symmetry)
as described here. While the patterns look

for both cases very similar, the mechanism leading to the coupling of two modes is rather

different. This alternative mechanism leading to rectangular pattern is especially interesting
in cases when centered rectangular patterns are observed in experiments such as in thermal

convection in planarly aligned nematic liquid crystals, howe,~er, when ab-initio calculations for

the same system show the opposite, namely, unstable rectangular pattern.
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