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Abstract. We numerically investigate nonlinear regimes of shear-induced phase separation
in entangled polymer solutions. Use is made of a time-dependent Ginzburg-Landau model

describing two fluid dynamics of polymer and solvent. As a new dynamic variable
a

conformation

tensor is introduced to represent chain deformations. Above the coexistence curve a dynamical
steady states is attained, where fluctuations are enhanced on various spatial scales. At relatively
large shear elongated polymer-rich regions form a transient network supporting most of the

stress. Because such a network is continuously deformed in shear flow, the shear stress and the

normal stress difference exhibit large fluctuations.

In two component viscoelastic fluids the network stress can act on the two components
asymmetrically. Then there arises dynamical coupling between stress and diffusion leading to

a number of intriguing viscoelastic effects. Most spectacular is shear-induced phase separation
in semidilute polymer solutions, in which light scattering can be drastically enhanced even

above the coexistence temperature Tcx [1-6]. In this system the composition fluctuations give
rise to inhomogeneities of the network structure and the applied shear produces stress imbal-

ance resulting in diffusion in the direction of phase separation. Theoretically this effect was

first examined to linear order in the composition fluctuation d# on the assumption that the

polymer stress instantaneously follows d# [7]. Formal time-dependent Ginzburg-Landau theo-

++
ries have also been developed [8-12], in which a tensor variable W is introduced to represent

chain deformations and viscoelasticity. In this scheme we set up dynamic equations in which

the composition and iii
are coupled. Hence the time scales of these two variables can be compa-

rable. As their first applications, if the dynamic equations are linearized around homogeneous

states, they can describe non-exponential decay of the composition fluctuations in dynamic
light scattering [13], viscoelastic effects in early stage spinodal decomposition [14], and the

fluctuation enhancement in shear in the linear regime [10-13]. However, it is very difficult to

solve the dynamic equations in nonlinear regimes and there is no satisfactory understanding of

the physical mechanisms in phase separation with or without shear. The aim of this paper is to

investigate the nonlinear regime of shear-induced phase separation by numerically solving the

dynamic equations. Viscoelastic effects in spinodal decomposition of deeply quenched polymer
solutions are investigated in another paper [15].
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We briefly set up a dynamic model of an entangled polymer solution in the semidilute

regime, # > #c
=

N~~/~ and # < I, #c being the critical volume fraction and N being the

polymerization index. In terms of the polymer volume fraction # and the conformation tensor

iii
"

(W~~), the free energy is given by [10]

F14, II
=

/
dr (iii) + jC14)lV41~ + (G(#) ~("~u u)~j

Ii)

Here f(#) £t (kBT/uo) # In #/N+ () -x)#~ + (#~ is the Flory-Huggins free energy density [16],

where uo is the volume of a monomer and x is the so-called interaction parameter dependent

on the temperature. In the second term C(#) c~ I Ii from the scaling theory. The last term

of ii is the elastic energy of the network, G(#) being the shear modulus. For simplicity we

++ ++

assume that the deviation of W from the equilibrium value I (= the unit tensor) is small, so

++ ++ ++
the elastic free energy is bilinear in W I. Because jV represents the network deformation,
its motion is determined by the polymer velocity vp and its simplest dy.namic equation is of

the form [10],

(Wij + ivp v)Wu ~(D~~~i.~j + wi~D~~)
=

-j(w~ d~)
,

12)

~

where D~~ =
0upi/0~~ is the gradient tensor of the polymer velocity vp. The left hand side

of (2) is called the upper convective time derivative in the rheological literature [17] and T(#)
is the stress relaxation time very long in the semidilute region [18]. From (I) and (2) we may

calculate free energy changes against infinitesimal motion of the network to obtain the network

stress in the form [8-12],

w .w w w w w

ap =
2w (&F/&w)

=
G(4)w lw 1) (3)

In particular, in weak, homogeneous, and stationary flow, (2) is solved to give If~~~ di~ £t

T(DI~ + D~i). In shear flow we require jw~yj < I for the validity of (I), which is also the

condition of the Newtonian regime §T < I, where § is the shear rate. The solution viscosity
in the Newtonian regime is ilp =

G(#)T(#), which is supposed to be much larger than the

solvent viscosity ~o. For rapid motions, on the other hand, our system behaves as a gel and

W~j d~j Gt 01Jp~/0~j + 0upj /0xi, where up is the time integral of vp and has the meaning of

the displaqement of the network.

Note that the solvent velocity vs and the polymer velocity vp are different when the diffusion

is taking place. The volume fraction is convected by vp as

)<
=

v (<vp) (4)

On the other hand, the average velocity v =
#vp + Ii #)vs obeys the usual hydrodynamic

equation,

~~t~ ~~~ ~ ~ ~°
~~~

'
~~~

where p is the average mass density and the stress tensor
I

=
C(#)( Vi)( Vi) $p arises

from the gradient term in (I) and the network stress. For simplicity we are assuming that the

mass densities of the pure polymer and solvent are the same and the fluid is incompressible.
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Then the polymer mass composition and the polymer volume fraction coincide and pi in (5) is

determined from the condition V
v =

0. Furthermore, assuming that the network stress acts

on the polymer and not directly on the solvent, we may derive from
a two fluid model [8-12]

the equation of the relative velocity w = vp vs,

where ((#) is the friction coefficient of order 67rilob~~#~, b being the monomer size. For slow

motions we may set 0w lot
=

0 in (6); then, w is expressed in terms of # and iii. Furthermore

neglecting the last term of (6), we obtain the expression w =

((#)~~(-# VdF/d# + V $p)
appearing in the literature [7,10-14], which implies that stress imbalance (V $p ~ 0) gives
rise to diffusion (stress-diffusion coupling). Note that the last term of (6) is small compared to

the third term on the right hand side for small deviations of iii. It is written in (6) to ensure

the nonnegative-definiteness of the heat production rate [10]. That is, without externally
imposed flow, we can check -dF/dt > 0 for any disturbances from (ii r~(6), where F

=

F(#, iii)
+ ) f drpv~ is the total free energy. Therefore, the system tends to a homogeneous

++ ++equilibrium state with W I
= v = w =

0 as t ~ cc
if there is no macroscopic flow.

We numerically solve the above equations in two space dimensions on a 128 x 128 square
lattice by applying a shear flow (u~)

=
iv and (u~)

=
0, at t

=
0. In this paper we report

results for

(#) /#c
=

2, T
=

Tc or x 1/2
=

N~~/~
,

(7)

where (.. is the spatial average. Note that the solution is above the coexistence curve.

The coefficient of the gradient free energy in (1) is written as C(#)
=

(kBT/uo)Co II, where

Co
"

b~ /18 in the random phase approximation [16]. In terms of the thermal correlation length
(

=
(NCO/5j~/~(r~ the gyration radius) and the cooperative diffusion constant Dco [16] in the

state (7) in the absence of shear, we measure space and time in the units oft
=

(5/3)~/~( and

To =
2.5i~/Dco. We also set G(#)

=
(kBT/uo)#~ and T(#)

=
0.3To((#/#c)~ + ii. The solvent

viscosity is taken to be ilo "
(kBT/uo)#(To, which is equivalent to assume ((#)

=
~o#~/Co.

Then the Newtonian solution viscosity and the relaxation time are written as
~p(#)/~o

"

4l3T(#)/3To and T(#)/To
"

0.3(4l~ +1) in terms of 4l
=

#/#c, which yield ~p/~o
"

13.6

and T/To
"

5.I in the initial state (7). In our case the shear modulus G(#) is considerably
larger and the relaxation time T(#) is much smaller than in the experiments [4-6] for the

computational convenience. Furthermore, our functional forms of G(#) and T(#)
are not well

consistent with the experiment in theta solutions [18] and scaling theories of polymer solutions

in theta solvent [19, 20], but we believe that the essential feature is insensitive to the detailed

forms of G(#) and T(#).
While there are only small thermal fluctuations in equilibrium, shear can enlarge the thermal

fluctuations on small spatial scales (/ the mesh size £ in the following simulations) in an early
stage (t < iTo). In later times the fluctuations on various spatial scales appear and the

system tends to a strongly fluctuating, dynamical steady state. Hence random source terms

in the dynamic equations are indispensable for this effect, though they have been omitted

so far for simplicity. In fact, if the initial values #(x, y,0) are randori numbers distributed

around the average Iii and there are no random source terms in the dynamic equations for

t > 0, the fluctuations initially grow but eventually disappear as t ~ cc. In our simulations

we therefore add Gaussian random source terms on the right hand sides of (2), (5), and

(6), which are related to 1IT, ~o, and (, respectively, to satisfy the fluctuation-dissipation
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Fig. 1. 4~(x, y, t)
=

#(x, y, t)/#c at t
=

500 for §To
=

0.02. The space coordinates are measured in

the units of £
=

(5/3)~/~f, f being the correlation length in equilibrium. The x axis is along the flow

direction and the y axis is along the shear direction.

relations. After the dynamic equations are made dimensionless, these random source terms

are still proportional to a parameter e =
[uoN3/~/£~]~/~, which has not yet been specified, d

being the spatial dimensionality. Our model is self-consistent for arbitrary e, so we set e =
0.I

in our simulations. The variance a =
[((4l (4l))2)]~/~ taken over all the lattice points is then

equal to 0.038 in equilibrium (I
=

0). Furthermore for slow disturbances we are allowed to set

0v/0t
=

0w/0t
=

0 in (5) and (6). Then v can be expressed in terms of $p and the random

stress tensor using the FFT scheme.

First, we show results for iTo
"

0.02 or iTo
"

0.10. in terms of
T

in the initial state (7).
Figure I displays 4l(x, y, t)

=
#(x, y, t) /#c at t

=
500, where a =

0.162 and jw~~j £ 0.2. We

can see fluctuations on various spatial scales. Figure 2 illustrates snapshots of the fluctuations,
where the darkness represents (4l(x,y,t) 4lm;n)/(4lmax 4lm;n), 4lmax

=
2.675 and 4lm;n

=

1.087 being the maximum and the minimum of 4l(x, y, t) at these times. Here the fluctuations

are elongated in abnormal directions, which are opposite to those in sheared near-critical fluids

without elasticity [21, 22], as the linear calculations have shown [7,10-13]. Furthermore we can

see that the largest scale fluctuations are continuously deformed by hydrodynamic convection

on the time scale of lliTo (" 50). The structure factor S(q~, q~, t) is much enhanced at small

q but is fluctuating in time, so in Figure 3 we show the time average of the structure factor

taken over the time interval 150 < t < 1000. It is the butterfly scattering pattern observed in

the scattering experiment [4-6].

Secondly, we show results for iTo
=

0.05 or iT
=

0.25 in terms of T in the initial state

(7). Figure 4 displays 4l(x, y,t) at t
=

400, where a =
0.549 and the fluctuations are more

enhanced than in Figure I. We also confirm jw~yj £ 0.5 here. In spatial regions in which

4l(x, y, t) deviates considerably below 2, it varies smoothly in space. This is because the small
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Fig. 2. Snapshots of 4~(x, y, t) for §ro
=

0.02 showing elongation of the fluituations in abnormal

directions. The numbers are the times measured in the units of To =

2.5£~ /Dco after application of

shear. The
x

(flow) direction is horizontal and the y (shear) direction is vertical.

scale fluctuations created by the random source terms do not grow in such regions. On the

contrary, in regions where 4l(x, y,t) / 2, it varies irregularly even on the mesh size scale I.

This is also the case in most spatial regions in the first simulation (see Fig. I). In Figure 5

we show snapshots of 4l(x, y, t)
as in Figure 2, where 4lmax

=
3.594 and 4lm;n

=
0.380. Here

the polymer~rich regions are elongated into long stripes forming a transient network. Figure 6

shows the time average of the structure factor in the interval 150 < t < 1000. The peak wave

numbers are more smaller and closer to the q~ axis than in Figure 3 in accord with reference [4].
We finally examine the effect of the shear~induced fluctuations on the average shear stress,

a~~ =
(ap~~i ic(<)(o</oxi(o</evil

,

(8)

and the average normal stress difference,

Ni
= (ap~~ ap~~i + ic(«

(o</ov)~ o</ox)~j1
191
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Fig. 3. Contour plot of the time average of the structure factor for §ro
=

0.02 in the q~ qy plane.
The wave vector is measured in the units of 27r/128£. The peak height is 15.7.
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F~g. 4. 4l(~, Y, t)
"

#(~, Y, t) /#c at t
=

400 for )To
=

0.05.

the averages being taken over the lattice points. In our problem we have confirmed that the

first terms of (8) and (9) are much larger than the second terms, while the second terms give
dominant singular contributions in Newtonian fluids [23]. Figures 7 and 8 display a~~ and Ni

divided by ~o /3To in the time region 0 < t < 800 for §To
"

0.01, 0.02, and 0.05. The shear stress

first grows linearly in time (c~ t) up to the order of ~pi at t
r~ T, but it begins to decrease with
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ii

Fig. 5. Snapshots of 4l(x, y,t) for §ro
=

0.05. A network composed of elongated polymer-rich
regions is being deformed and destroyed by shear. The x axis is along the flow direction and the y

axis is along the shear direction.

growth of the shear~induced fluctuations. The normal stress difference grows as
t~ initially.

After the transient stage they both exhibit considerable fluctuations except for the smallest

shear iTo
"

0.01. At the largest shear iTo
"

0.05, the network composed of elongated polymer-
rich regions is often extended throughout the system but is subsequently disconnected. The

stress is mostly supported in such a network. This process produces abnormal fluctuations

of the stress. Interestingly, in many cases, the normal stress difference takes a maximum

(or minimum) when the shear stress takes a minimum (or maximum). In experiments the

stress components are measured as the force density acting on a surface with a macroscopic
linear dimension d. If d is longer than the characteristic size of the network structure of

the polymer-rich region, the temporal stress fluctuations will be suppressed. Nevertheless the

shear-induced composition fluctuations will reduce the shear stress on the average and enhance

the normal stress difference. Here we mention an early experiment by Lodge [24], who observed

abnormal temporal fluctuations of the normal stress difference at a hole of1 mm diameter from

polymer solutions contained in a
cone-plate apparatus. He ascribed its origin to the growth
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Fig. 6. Contour plot of the time average of the structure factor for §To
=

0.05 in the q~ qy plane.

The peak height is 470.
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Fig. 7. Shear stress as a function of time for fro
=

0.01, 0.02, and 0.05 from below. The fluctuations

become larger with increasing shear.

of inhomogeneities or gel particles of dimensions about 4 mm. We believe that our results are

closely related to his observation. Further experiments on small scale stress fluctuations are

very informative. Birefringence and dichroism experiments will also be useful.
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Fig. 8. Norlnal stress difference as a function of tiIne for fro
=

0.01, 0.02, and 0.05 froIn below.

The fluctuations are even more larger than those of the shear stress.

Our main results are summarized as follows. Althqugh above the coexistence curve, macro-

scopic phase separation cannot be achieved, the level of the fluctuations increases with increas-

ing shear and can even be comparable to that in spinodal decomposition occurring without

shear at lower temperatures. In other words, in the nonlinear regime above the coexistence

curve, polymer solutions can undergo incomplete phase separation induced by shear. In this

dynamically steady state, anisotropic fluctuations grow from small to large scales, but large
scale fluctuations are deformed by shear and are eventually dissipated. The random source

terms in the dynamic equations are hence indispensable in this cascade process as sources of

the growing fluctuations.

Our final remarks are as follows. (I) We will examine the effects below the coexistence curve

and in the non-Newtonian regime in a forthcoming paper. We may well expect that the system

will phase-separate macroscopically when it is deeply quenched inside the unstable temperature

region in the presence of shear. Note also that we have made the shear modulus G larger than

in real polymers to have large shear effects even in the Newtonian regime. (ii) It is also worth

studying how nucleation is affected by weak shear as it is increased from zero in the metastable

temperature region. For near-critical fluids it is established that nucleation can be suppressed if

the critical radius becomes smaller than the Taylor break-up size (rw a/qi,
a

being the surface

tension) in shear flow [25]. It is unknown how this scenario is changed in polymer solutions.

(iii) In asymmetric polymer blends, in which the t~v.o polymers have very different viscoelastic

properties, the dynamic coupling between stress and diffusion should generally be present [13]

as in polymer solutions. In such blends we may predict similar shear-induced composition
fluctuations.



304 JOURNAL DE PHYSIQUE II N°2

References

iii Ver Strate G. and Philippoff W., J. Polym. Sci. Polym. Lett. 12 (1974) 267.

[2] Rangel-Nafaile C., Metzner A-B- and Wissbum K-F-, Macromolecules 17 (1984) l187.

[3] Krimer H. and Wolf B-A-, Macromol. Chem. Rapid Commun. 6 (1985) 21.

[4] Wu X-L-, Pine D-J- and Dixon P-K-, Phys. Rev. Lett. 68 (1991) 2408.

[5] Hashimoto T. and Fujioka K., J. Phys. Soc. Jpn 60 (1991) 356; Hashimoto T. and Kume

T., J. Phys. Soc. Jpn 61 (1992) 1839;1Ioses E., Kume T. and Hashimoto T., Phys. Rev.

Lett. 72 (1994) 2037.

[6] van Egmond W., Werner D-E- and Fuller G., J. Chem. Phys. 96 (1992) 7742.

[7] Helfand E. and Fredrickson H., Phys. Rev. Lett. 62 (1989) 2468.

[8] Grmela M., Phys. Lett. A 130 (1988) 81.

[9] Beris A-N- and Edwards B-J-, Thermodynamics of Flowing Systems (Oxford University
Press, Oxford, 1994).

[10] Onuki A., Phys. Rev. Lett. 62 (1989) 2472; J. Phys. Soc. Jpn 59 (1990) 3423.

[iii MiIner S-T-, Phys. Rev. E 48 (1993) 3874.

[12] Ji H. and Helfand E., Macromolecules 28 (1995) 3869.

[13] Doi M. and Onuki A., J. Phys. II France 2 (1992) 1631.

[14] Onuki A., J. Non-Crystalline Solids172-174 (1994) list.

[15] Taniguchi T. and Onuki A., Phys. Rev. Lett. 77 (1996) 4910.

[16] de Gennes P-G-, Scaling Concepts in Polymer Physics, 2nd ed. (Cornell University Press,
Ithaca, 1985).

[17] Larson R-G-, Constitutive Equations for Poymer Melts and Solutions (Butterworths,
Boston, 1986).

[18] Adam M. and Delsanti M., J. Phys. France 45 (1984) 1513.

[19] Brochard F. and de Gennes P-G-, Macromolecules lo (1977) l157.

[20] Colby R-H- and Rubinstein M., Macromolecules 23 (1990) 2753.

[21] Beysens D., Gbadarnassi M. and Moncef-Bouanz B., Phys. Rev. A 28 (1983) 2491.

[22] Onuki A. and Kawasaki K., Ann. Phys. (NY)121 (1979) 456; Onuki A., Yamazaki K.

and Kawasaki K., Ann. Phys. (NY) 131 (1981) 217

[23] Onuki A., Phys. Rev. A 35 (1987) 5149.

[24] Lodge A-S-, Polymer 2 (1961) 195.

[25] Goldburg W.I. and Min K-Y-, Physica A 204 (1994) 246.


