Topological Characterization of Reconstructed Attractors Modding Out Symmetries

C. Letellier, G. Gouesbet

To cite this version:


HAL Id: jpa-00248397
https://hal.archives-ouvertes.fr/jpa-00248397
Submitted on 1 Jan 1996

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Topological Characterization of Reconstructed Attractors Modding Out Symmetries

C. Letellier (*) and G. Gouesbet

Laboratoire d'Énergétique des Systèmes et Procédés (**), INSA de Rouen, B.P. 08, 76131 Mont-Saint-Aignan, France

(Received 24 October 1995, revised 2 May 1996, accepted 8 August 1996)

PACS.05.45.+b – Theory and models of chaotic systems

Abstract. — Topological characterization is important in understanding the subtleties of chaotic behaviour. Unfortunately it is based on the knot theory which is only efficiently developed in 3D spaces (namely \(\mathbb{R}^3\) or in its one-point compactification \(S^3\)). Consequently, to achieve topological characterization, phase portraits must be embedded in 3D spaces, i.e. in a lower dimension than the one prescribed by Takens' theorem. Investigating embedding in low-dimensional spaces is, therefore, particularly meaningful. This paper is devoted to tridimensional systems which are reconstructed in a state space whose dimension is also 3. In particular, an important case is when the system studied exhibits symmetry properties, because topological properties of the attractor reconstructed from a scalar time series may then crucially depend on the variable used. Consequently, special attention is paid to systems with symmetry properties in which specific procedures for topological characterization are developed. In these procedures, all the dynamics are projected onto a so-called fundamental domain, leading us to the introduction of the concept of restricted topological equivalence, i.e. two attractors are topologically equivalent in the restricted sense, if the topological properties of their fundamental domains are the same. In other words, the symmetries are modded out by projecting the whole phase space onto a fundamental domain.

1. Introduction

State space reconstruction is the creation of multidimensional state space from a scalar time series. It is a prerequisite step for analyzing the behaviour of a dynamical system of which only one time series is known. A pioneering paper by Packard et al. [1] proposed two ways of reconstructing a state space, i.e. by using time delay or time derivative coordinates. Another kind of coordinate, namely principal components [2], is now commonly used. Gibson et al. [3] showed that the relationship between delays, derivatives and principal components consists in a rotation and a rescaling. Consequently, from Gibson's point of view, statements about the nature of the equivalence between the original phase portrait and the reconstructed one would be independent of the coordinate system. They may however depend on the reconstruction parameters. For instance, if one uses delay coordinates, it may be observed that the shape of a bounded manifold changes as the delay is changed [4], and at some point this manifold

(*) Author for correspondence (e-mail: letellie@coria.fr)
(**) URA CNRS 230
undergoes self intersections in the interior of which the flow appears to be constrained. Nevertheless, it is expected that there must exist a delay range for which a reconstructed attractor with delay coordinates is topologically equivalent to a reconstructed attractor with derivative coordinates. A study of this issue, although useful, will be postponed to future work.

Initially, only the phase portrait was reconstructed, allowing the study of the topological structure of the strange attractor and the determination of important global parameters such as fractal dimensions, Lyapunov exponents, etc. Another way of reconstructing state spaces is by using global vector field reconstructions. Indeed, for experimental systems, given a scalar time series for an observable, an important problem is to provide a set of ordinary differential equations equivalent to the original underlying system. There is a great deal of interest in this problem [4–12]. An equivalent reconstructed vector field may be an important step in gaining a better understanding of the underlying physical processes responsible for the chaos observed.

When a state space or a vector field is reconstructed, a question arises: is the reconstructed dynamics equivalent to the original dynamics? And more precisely, in which sense is it equivalent, i.e. how equivalent can it be? This is the basic question addressed in this paper for the special case of equivariant vector fields.

Takens [15] proved that in the absence of noise it is always possible to embed a time series in a state space. To ensure with probability one that a reconstruction is an embedding, i.e. that there exists a diffeomorphism from the original state space to the embedding space, the embedding dimension has to be \( d_E \geq 2D_H + 1 \) where \( D_H \) would ideally refer to the Haussdorff dimension of the attractor studied. If not, the diffeomorphism is not ensured but is quite possible. Indeed, diffeomorphisms between manifolds of the same dimension are not uncommon. Unfortunately Takens’ theorem may be too demanding for experimentalists because it requires work in high-dimensional spaces. Indeed, the smaller the dimension of an embedding, the better the situation for analyzing the data. Thus, in spite of Takens’ theorem, the choice of the embedding dimension is still a topic of particular interest [16–18]. Actually, Takens’ theorem does not refer to cases when the dimension of the reconstructed state space is smaller than \( 2D_H + 1 \). Such cases, however, are particularly important since topological characterization of attractors is based on the knot theory which is related to three dimensional spaces. Thus, topological characterization is always achieved with a lower dimension than the one defined by the Takens criterion.

The general purpose of the present paper is therefore to clarify the nature of equivalence between original and reconstructed attractors in 3D state spaces such as those presented in references [2, 5, 14], in the particular case concerning equivariant systems as exemplified by the Lorenz system [19]. The results of this paper are obtained with derivatives, which have the advantage of providing algebraic relationships between original and reconstructed spaces. Another advantage of derivatives is that global vector field reconstruction may be achieved in principle by working with a small piece of trajectory. For example, an attractor may be reconstructed by studying transients, or intermittency behaviour may be reconstructed by analyzing only laminar phases [20].

In the course of this study, specific procedures to perform the topological characterization of systems with symmetry properties (such as the Lorenz system) are developed. In such symmetrical systems we show that a fundamental domain is conveniently defined to characterize the topology of their related attractors. Indeed, we will show in this paper that the topology of the fundamental domain is of great importance in characterizing the dynamical behaviour of an equivariant system. In this approach, the topological characterization takes into account the symmetry to provide a description which acts independently of symmetry properties. In this way, a characterization may be obtained, even if the symmetry is not preserved by the reconstruction method, since we mod out the symmetry in the topological characterization.
Such a procedure is found to be useful when a dynamical system displaying some symmetries is reconstructed from a scalar time series since an attractor induced by a time series need not have the same symmetry properties. As a result, topological characterization of the original and reconstructed attractors may lead to two different templates, even though the underlying system is the same. Therefore, factoring out symmetry groups using concepts such as the fundamental domain is essential for carrying out a characterization independent of the choice of a particular embedding. The existence of a fundamental domain in which all the trajectory is projected leads us to introduce a procedure for topological characterization in this domain by using linking numbers counted on a plane projection and a fundamental template synthesizing the topological properties of the fundamental domain. We therefore introduce the concept of restricted topological equivalence meaning topological equivalence of related fundamental domains (and thus of related templates).

The paper is organized as follows. Section 2 is a brief review of the time derivative coordinate systems used to obtain reconstructed state spaces. When the original system is known, an algebraic transformation between original and reconstructed coordinates is obtained. A brief review of the topological characterization procedure is given thereafter. Section 3 is the main purpose of our paper. Successively, we show that i) the attractor reconstructed from the $y$-variable of the Rössler system is diffeomorphically equivalent to the original one and ii) the attractors reconstructed from the variables of the Lorenz system are topologically equivalent to the original one in fundamental domains but with different symmetry properties (consequences for the dynamical analysis from each variable are explained). This means that topological equivalence stricto sensu is not satisfied but restricted topological equivalence is nevertheless ensured. Section 4 is a conclusion.

2. Theoretical Background

2.1. RECONSTRUCTION METHOD. — Let us consider a time continuous dynamical system defined by a set of ordinary differential equations:

$$\dot{x} = f(x; \mu)$$

in which $x(t) \in \mathbb{R}^n$ is a vector valued function depending on a parameter $t$ called the time and $f$, the so-called vector field, is a $n$-component smooth function generating a flow $\phi_t$. $\mu \in \mathbb{R}^p$ is the parameter vector with $p$ components, assumed to be constant in this paper. The system (1) is called the original system (OS). As stated in the introduction the systems studied are such that $n = 3$. The OS may therefore be written as:

$$\begin{align*}
\dot{x} &= f_1(x, y, z) \\
\dot{y} &= f_2(x, y, z) \\
\dot{z} &= f_3(x, y, z)
\end{align*}$$

(2)

It is then assumed that the observer numerically records a scalar time signal. By convention in this section, the observable is taken to be $x_1 = x$. 
The template is then checked by extracting the linking number \(L(N_1, N_2)\) of a pair of orbits \(N_1\) and \(N_2\) in a plane projection. For this operation one only needs to count the signed crossings of a pair of orbits \(N_1\) and \(N_2\) in a regular plane projection of the pair (a drawing of it such that no more than two lines cross at any point). After assigning an orientation to the periodic orbits with respect to the flow and defining a number \(\epsilon_{12}(p) = \pm 1\) for right/left-handed crossings \(p\) between \(N_1\) and \(N_2\) [30], the linking number is given by:

\[
L(N_1, N_2) = \frac{1}{2} \sum_p \epsilon_{12}(p)
\]

which is a topological invariant. Then, orbits \(N_1\) and \(N_2\) are constructed on the template (the procedure is reported in detail in [31]). Finally, linking numbers are compared: the template is validated if the linking number obtained from the regular plane projection is equal to the one obtained from the corresponding orbits constructed on the template.

As the template which carries the periodic orbits is identified, the organization of the orbits is known. For a complete discussion of the equivalence between periodic orbits embedded within a strange attractor and orbits of the template, see [32].

3. Is \(A_{SS}\) Equivalent to \(A_{OS}\)?

The system studied in this paper is generated by three equations, i.e. there are three original coordinates, namely \((x, y, z)\). Each of these coordinates may be taken as the observable and, consequently, three different cases may be investigated for each system. Only the most interesting results will be discussed.

Although only one variable of the Rössler system provides a reconstructed attractor diffeomorphically equivalent to the original Rössler attractor, attractors reconstructed from the other variables \((x\) and \(z)\) are topologically equivalent to the original one by using delay coordinates [32] as well as derivative coordinates [33]. By topologically equivalent, we mean that any two periodic orbits in the reconstructed phase space have the same topological invariants as the corresponding orbits in the original phase space. But the Rössler system is a very simple folded band and it is definitely worth studying more complicated cases. For instance, let us examine the case of the well-known Lorenz system which exhibits symmetry properties.

3.1. Original Phase Space. — In the case of the Lorenz system, the problem becomes a little more tricky. Two kinds of configuration related to the equivalence properties of the system appear. (i) \(x\)- and \(y\)-observables are equivalent and provide attractors \(A_x\) and \(A_y\) with symmetry properties, respectively (Figs. 1a and b), (ii) \(z\)-observable is invariant and provides an attractor \(A_z\) without any symmetry (Fig. 1c). It is clear that all the information on symmetry is lost in \(A_z\). King and Stewart [34] showed that the use of an equivariant observable is required to guarantee a reconstructed attractor with symmetry properties. Unfortunately, even now, we are not sure that the symmetry properties are identical to the original ones, as illustrated below.

In the whole space, the Lorenz system reads as:

\[
\begin{align*}
\dot{x} &= \sigma(y - x) \\
\dot{y} &= R x - y - xz \\
\dot{z} &= -bz + xy
\end{align*}
\]

in which we use a control parameter vector \((R, \sigma, b) = (28, 10, 8/3)\) for which the asymptotic motion settles down onto a strange chaotic attractor [19].
Fig. 1. — Attractors reconstructed from different variables of the Lorenz system: a) Attractor $A_x$, b) Attractor $A_y$, c) Attractor $A_z$. 
Fig. 2. — Schematic view of the fundamental domain $\mathcal{D}$ as the right wing and its copy $\gamma \mathcal{D}$ as the left wing.

The system has three fixed points reading as:

$$F_0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad F_+ = \begin{pmatrix} x_+ \\ y_+ \\ z_+ \end{pmatrix} \quad \text{and} \quad F_- = \begin{pmatrix} x_- \\ y_- \\ z_- \end{pmatrix}$$

where $x_\pm = y_\pm = \pm \sqrt{b(R-1)}$ and $z_\pm = R-1$.

One may note that the vector field $f$ defined by equation (6) is equivariant, i.e.

$$f(\gamma x, \mu) = \gamma f(x, \mu) \quad (7)$$

where $\gamma$ is a matrix defining the equivariance. In the Lorenz case, the matrix $\gamma$ is given by:

$$\gamma = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (8)$$

In other words, the original Lorenz attractor $A_{OS}$ is invariant under the action of $\gamma$ which defines an axial symmetry.

This symmetry induces specific considerations such as defining a fundamental domain $\mathcal{D}$ which tesselates the complete state space [35,36]. Indeed, as the Lorenz dynamics is invariant under the action of $\gamma$, the state space can be tiled by a fundamental domain $\mathcal{D}$ and one of its copy $\gamma \mathcal{D}$ (note that $\gamma^2 \mathcal{D} = \mathcal{D}$). In the Lorenz attractor, the fundamental domain may be viewed as a wing: in Figure 2 the fundamental domain $\mathcal{D}$ is displayed as the right wing and its copy $\gamma \mathcal{D}$ as the left wing. More precisely, the fundamental domain $\mathcal{D}$ is separated from its copy by the invariant surface $S$ under the action of $\gamma$, i.e.

$$S \equiv \{(x, y, z) \in \mathbb{R}^3 \mid y = -x\} \quad (9)$$

Consequently, the fundamental domain may be defined as

$$\mathcal{D} \equiv \{(x, y, z) \in \mathbb{R}^3 \mid y > -x\} \quad (10)$$
Fig. 3. — Symmetric orbit a) and a pair of asymmetric orbits b) and c). a) Symmetric orbit encoded (RL), b) asymmetric orbit encoded (LRR), c) asymmetric orbit encoded (RLL).

while its copy is defined as

$$\gamma D \equiv \{(x, y, z) \in \mathbb{R}^3 \mid y < -x\}$$  (11)

It must be noted that the choice of $D$ and $\gamma D$ is quite arbitrary and, consequently, $D$ and $\gamma D$ could be inverted.

For the sake of clarity, we must introduce a symbolic dynamics working in the whole phase space before carrying out the topological analysis. Such symbolic dynamics was first introduced by Birman and Williams [37] as displayed in Figure 2. All periodic orbits may thus be encoded in the obvious way with symbols on the set $\{L, R\}$ following the trajectory. In this case, a symbol is associated with each revolution of the trajectory around one of the fixed points $F_+$ or $F_-$. The topological period of an orbit is thus clearly related to the number of revolutions around $F_+$ and $F_-$. The population of periodic orbits is reported in Table I.

Two kinds of periodic orbits may then be distinguished. First, we have symmetric orbits (Fig. 3a) which are globally invariant under the action of $\gamma$. Their symbolic sequence may be written under the form $(WW^*)$ where $W^*$ is the conjugate of $W$, i.e. $R$ is mapped to $L$ and vice versa. The period of such an orbit is therefore even. Next, we have asymmetric orbits (Figs. 3b and c) which are mapped to each other under the action of $\gamma$ to their symmetric configuration and therefore appear in pairs. For instance, the orbit encoded by (LRR) (Fig. 3b) is mapped to the orbit encoded by (RLL) (Fig. 3c) under the action of $\gamma$. Their symbolic sequences are conjugate.

This symbolic dynamics has been successfully used by many authors as exemplified by Sparrow [38]. Such symbolic dynamics is not compatible with the existence of a two strip template [39]. This is because it is impossible to build a template with two strips playing a symmetric role. A four strip template may, however, successfully predict the linking numbers counted in a regular plane projection of periodic orbits. Such a template is displayed in Figure 4. Consequently, symbolic dynamics on the set $\{0, \bar{1}, 1, 0\}$ is required to encode periodic orbits on this template. Note that symbols $\bar{0}$ and $\bar{1}$ are the conjugate of 0 and 1, respectively. The necessity of using 4 symbols for the template and only 2 (L and R) to encode the orbits is
Table I. — Population of periodic orbits within the Lorenz attractor for $R = 28$: $y = (b(R - 1))^{1/2}$ For each periodic orbit, the symbolic sequences in the whole phase space and in the fundamental domain $D$ are given.

<table>
<thead>
<tr>
<th>in the whole space</th>
<th>in $D$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$RL$</td>
<td>1</td>
</tr>
<tr>
<td>$RLLR$</td>
<td>10</td>
</tr>
<tr>
<td>$LRR$</td>
<td>$RLLR$</td>
</tr>
<tr>
<td>$RLLLRR$</td>
<td>$RLL$</td>
</tr>
<tr>
<td>$LRRR$</td>
<td></td>
</tr>
<tr>
<td>$RLLRLRRL$</td>
<td>$RLLL$</td>
</tr>
<tr>
<td>$RLLLLRR$</td>
<td></td>
</tr>
<tr>
<td>$LRRLR$</td>
<td>$RLLR$</td>
</tr>
<tr>
<td>$RLLRRRRRLRLL$</td>
<td>$RLLL$</td>
</tr>
<tr>
<td>$LRRLL$</td>
<td></td>
</tr>
<tr>
<td>$RLLLRLRRRL$</td>
<td></td>
</tr>
<tr>
<td>$LRRRR$</td>
<td>$RLLL$</td>
</tr>
<tr>
<td>$RLLLLRRRRRRRR$</td>
<td></td>
</tr>
<tr>
<td>$LRRRLR$</td>
<td>$RLLRLR$</td>
</tr>
<tr>
<td>$RLLRRRRRRRLL$</td>
<td>$RLLRLR$</td>
</tr>
<tr>
<td>$LRRRLR$</td>
<td>$RLLRLR$</td>
</tr>
<tr>
<td>$RLLLLRRRRRL$</td>
<td>$RLLLL$</td>
</tr>
<tr>
<td>$LRRRRRL$</td>
<td></td>
</tr>
<tr>
<td>$RLLLLRRRRRRRR$</td>
<td></td>
</tr>
<tr>
<td>$LRRRRRLR$</td>
<td>$RLLRLR$</td>
</tr>
<tr>
<td>$RLLLLLLRRRRRR$</td>
<td></td>
</tr>
<tr>
<td>$LRRRRRL$</td>
<td>$RLLRLR$</td>
</tr>
<tr>
<td>$RLLLLRRRRRRRR$</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4. — Four strip template obtained by dividing each wing in two strips: one, labelled by 0 or \( \overline{0} \), associated with the reinjection of the trajectory in the same wing, and one, labelled by 1 or \( \overline{1} \), associated with the transition from one wing to the other.

Fig. 5. — First-return map to the Poincaré section \( P_w \) computed with the \( x \)-variable. Each monotonic branch is associated with a strip of the template according to the symbols on the set \( \{0, \overline{1}, 1, 0\} \).

A shortcoming which will be canceled by accounting for the symmetry, i.e. by projecting the dynamics on fundamental domains.

This discussion may also be illustrated by computing a first-return map in a Poincaré section \( P_w \) reading as:

\[
P_w \equiv \{(x, y) \in \mathbb{R}^2 \mid z = R - 1\}
\]  

The \( x \)-variable is then used to compute the first-return map which is made up of four monotonic branches exhibiting an inversion symmetry relative to the fixed point \( F_0 \) (Fig. 5).

Symbols of the set \( \{0, \overline{1}, 1, 0\} \) act as transition symbols. Thus, for instance, two revolutions on the left wing corresponding to a sequence \( \{L, L\} \), i.e. without any transition is mapped to \( 0 \), and a sequence \( \{L, R\} \), exhibiting a transition from the left to the right wing, is mapped to \( \overline{1} \) (see Fig. 3). Therefore blocks of two letters in the code \( \{R, L\} \) are mapped to one letter in
Fig. 6. — Dynamics of the Lorenz system projected on the fundamental domain $\mathcal{D}$.

the code $\{0, 1, 0\}$. As a whole, we may define a mapping $\Psi$ sending blocks of two letters in $\{R, L\}$ to one letter in $\{0, 1, 0\}$, reading as:

$$
\Psi \equiv \begin{cases} 
\Psi(\text{LL}) = 0 \\
\Psi(\text{LR}) = 1 \\
\Psi(\text{RL}) = 1 \\
\Psi(\text{RR}) = 0 
\end{cases} \quad (13)
$$

For instance, the orbit $(\text{LRR}) = \text{LRRLRR...}$ is mapped to $\overline{1010101...} = (\overline{101})$.  

3.2. In the fundamental domain. — It has been shown that the dynamical analysis of such a system may be more conveniently achieved by working in the fundamental domain in which all the trajectory is projected [35, 36]. Indeed, taking into account the equivariance property, the dynamical behaviour on the fundamental domain is the same as on its copy. Consequently, knowing the topological organization in the fundamental domain and the nature of the equivariance provides all the required topological information on the whole attractor. The template associated with the fundamental domain is then much simpler than on the whole attractor and is therefore given a due privilege. Furthermore, restricted topological equivalence allows us to compare the topological organization of different attractors tasselated by different numbers of fundamental domains, i.e. different symmetry orders. Therefore the comparison between the spectra of periodic orbits, from the point of view of the symbolic dynamics, is allowed.

In order to achieve a topological characterization of the fundamental domain, all the dynamics has first to be projected on the fundamental domain as displayed in Figure 6. A given periodic orbit in the whole space reading as:

$$
\xi \equiv \{X_\xi(t)\}_{t=0}^{T_\xi} \quad (14)
$$

where $X_\xi(t)$ is the coordinate vector at time $t$ of the periodic orbit $\xi$, and $T_\xi$ is its time period,
Fig. 7. — First-return map on the Poincaré set $P_D$ built with the invariant $z$-variable.

is then projected on the fundamental domain to a fundamental periodic orbit reading as:

$$
\xi_D = \{ Y_\xi(t) \mid Y_\xi(t) = \gamma X_\xi(t) \text{ if } y < -x \quad \text{,} \quad Y_\xi(t) = X_\xi(t) \text{ otherwise } \}^{T_\xi}_{t=0}
$$

A Poincaré section $P_D$ of the fundamental domain $D$ is then defined as

$$
P_D = \{ (x, z) \in \mathbb{R}^2 \mid y = y_+, \quad \frac{\partial f_z}{\partial y} < 0 \}
$$

where $f$ is the vector field defined in equation (6). The first-return map is displayed in Figure 7 and is found to be similar to the well-known Lorenz map [19]. This is due to the fact that the Lorenz map is computed with the $z$-invariant variable which does not distinguish the fundamental domain $D$ from its copy $\gamma D$.

This first-return map allows us to encode periodic orbits as follows:

$$
K'(z) = \begin{cases} 
0 & \text{if } z < z_c \\
1 & \text{if } z > z_c 
\end{cases}
$$

where $K'(z)$ is the code of the $z$-coordinate of the trajectory in the Poincaré set $P_D$. The population of fundamental periodic orbits is reported in Table I.

In order to define the linking properties of fundamental periodic orbits, we introduce the fundamental linking numbers $L(N_i, N_j)$ which are counted on the fundamental domain and defined as:

$$
L(N_i, N_j) = \frac{1}{2} \sum_p \epsilon_{ij}(p) \quad (i \neq j)
$$

where $\epsilon_{ij}$ designates oriented crossings between two fundamental orbits. Fundamental linking numbers $L(N_i, N_j)$ have to be equal to the linking numbers predicted by the template which synthesizes the topology of the fundamental domain. Such a template may be called a fundamental template in contrast with the more complex template which is associated with the
Fig. 8. — Checking of the fundamental linking number $\mathcal{L}(101, 10)$ between the plane projection and the template construction of orbit pair (101, 10). a) $\mathcal{L}(101, 10) = \frac{1}{2}(+4) = +2$, b) $\mathcal{L}(101, 10) = \frac{1}{2}(+4) = +2$

Table II. — *Fundamental linking numbers between pairs of orbits whose period is less than 5.*

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(10)</th>
<th>(101)</th>
<th>(100)</th>
<th>(1011)</th>
<th>(1001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10)</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(101)</td>
<td>+1</td>
<td>+2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(100)</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1011)</td>
<td>+2</td>
<td>+3</td>
<td>+4</td>
<td>+4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1001)</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+3</td>
<td>+4</td>
<td></td>
</tr>
<tr>
<td>(1000)</td>
<td>+1</td>
<td>+2</td>
<td>+3</td>
<td>+3</td>
<td>+4</td>
<td>+4</td>
</tr>
</tbody>
</table>

whole attractor. As an example, the fundamental linking number $\mathcal{L}(101, 10)$ is counted on a plane projection of the fundamental orbits encoded by (101) and (10) (see Fig. 8).

In the same manner, we determine linking numbers between all pairs of orbits whose period is less than 5. These linking numbers are reported in Table II. All these linking numbers are found to be well predicted by the template described by the linking matrix $M_{ij}$ reading as:

$$M_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & +1 \end{pmatrix}$$

(19)

This template is displayed in Figure 8b where a construction of the pair (101, 10) is given as an example allowing the fundamental linking number $\mathcal{L}(101, 10)$ to be checked. The template obtained is furthermore found to be in agreement with the Lorenz map, i.e. a band 0 (even local torsion) is associated with the increasing (orientation preserving) branch of the map and a band 1 (odd local torsion) is associated with the decreasing (orientation reversing) branch of the map. A similar template is obtained from $\gamma D$.

3.3. Attractor induced by an equivariant variable. — Let us consider the attractor reconstructed from an equivariant variable that we may obtain by integrating a reconstructed vector field or by using derivative coordinates. The same reconstructed attractor may also be
obtained by applying a standard transformation \( \Phi \) (Eq. (4)) to the original attractor. The reconstruction technique relies on the analysis of a scalar time series. When the observable used is equivariant, then the reconstructed attractor is governed by equivariant variables only because the derivatives of equivariant variables are equivariant too. Consequently, the reconstructed system is unchanged under the action of a \( \gamma \)-matrix which reads as:

\[
\gamma = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]  

(20)

and defines an inversion symmetry which is not necessarily present in the original vector field. Indeed, the original Lorenz vector field is composed of two equivariant and an invariant variables. Consequently, a system whose original equivariance defines an axial symmetry is reconstructed as a system whose equivariance defines an inversion symmetry when an equivariant variable is used. As stated by King and Stewart [34], techniques for phase space reconstruction from an equivariant scalar time series are failing to obtain attractors whose symmetry is identical to the original symmetry. As an example taken here, the Lorenz system exhibiting an axial symmetry (see equivariance matrix of Eq. (8)) is mapped to a reconstructed system which possesses the equivariance matrix of equation (20), when the observable is equivariant. Of course, this equivariance is not directly related to the Lorenz system. It is therefore rather interesting to discuss the restricted topological equivalence between such a reconstructed attractor and the original one. In order to do that, we have to extract the fundamental template of the reconstructed attractor \( A_x \) generated by the equivariant variable \( x \), taken as an example. In this case, the reconstructed space is spanned by \((X,Y,Z) = (x(t), \dot{x}(t), \ddot{x}(t))\).

The fundamental domain cannot obviously be defined in terms of an invariant surface since only a single point, namely the origin of the reconstructed space, is invariant under the action of the \( \gamma \)-matrix. Nevertheless, we may practically define the fundamental domain as defined by:

\[
D \equiv \{ (X,Y,Z) \in \mathbb{R}^3 \mid X < 0 \}
\]  

(21)

and its copy

\[
\gamma D \equiv \{ (X,Y,Z) \in \mathbb{R}^3 \mid X > 0 \}
\]  

(22)

where \( X = 0 \) is here considered as an invariant surface. Once the dynamics is projected on the fundamental domain, we compute a first-return map into a Poincaré section \( P_{D_x} \) defined as:

\[
P_{D_x} \equiv \{ (Y,Z) \in \mathbb{R}^2 \mid X = X_F, \Dot{X} < 0 \}
\]  

(23)

where \( X_F = \sqrt{\beta(R - 1)} \). The first-return map can then be independently computed from the \( Y \)- or \( Z \)-variables. An equivalent first-return map may be obtained by using a Poincaré set \( P_X \) in the whole space which is defined as \( P_X = P_{X_+} \cup P_{X_-} \) where:

\[
P_{X_+} = \{ (Y,Z) \in \mathbb{R}^2 \mid X = X_F, \Dot{X} < 0 \}
\]  

(24)

and

\[
P_{X_-} = \{ (Y,Z) \in \mathbb{R}^2 \mid X = -X_F, \Dot{X} > 0 \}
\]  

(25)

To mod out the symmetry, the map is hereafter computed with an invariant variable which may be the natural invariant \( Z \)-variable or the less natural but efficient \( |Y| \)-variable. A map similar to the Lorenz map is obtained in which the critical point is located at \( |Y_c| = 78 \) (Fig. 9).
As on the original attractor, the increasing branch, labelled 0, is associated with the reinjection of the trajectory in the same wing and the decreasing branch, labelled 1, with the transition from one wing to the other.

Nevertheless, there exists a deep difference between the original attractor and the reconstructed attractor $A_x$ since the symmetry properties are different. Indeed, the fundamental template induced by the original attractor was found to be independent of the choice of the fundamental domain, i.e. $D$ and $\gamma D$ induce the same template. Conversely, in the reconstructed attractor, the strip of $D$ associated with the increasing branch of the first-return map undergoes a positive $\pi$-twist while the strip of $\gamma D$ associated with the same branch of the map undergoes a negative $\pi$-twist (Fig. 10a).

In the previous section, we have presented the topological procedure to characterize an attractor in a case where the symmetry preserves the local torsion sign but this condition is not met in the case of an inversion symmetry. In fact an inversion symmetry reverses the local torsion sign (Fig. 11). This property will have deep consequences on the fundamental linking numbers $\mathcal{L}(N_i, N_j)$ as described below.

From the mask of $A_x$ (Fig. 10a), we extract the masks associated with the fundamental domain $D$ and its copy $\gamma D$, respectively (Fig. 10b). Let us insist on the fact that Figure 10b presents both $D$ and $\gamma D$, i.e. exhibits two fundamental domains in so far as either $D$ or $\gamma D$ could be chosen as the fundamental domain, this choice being arbitrary. Two fundamental templates are then proposed (Fig. 10c). Note that the fundamental template associated with the fundamental domain $D$ presents a band 1 with a positive $\pi$-twist and the template associated with its copy $\gamma D$ has a band 1 with negative $\pi$-twist: this is a consequence of the inversion symmetry which reverses the local torsion sign in contrast with the previously discussed case of axial symmetry. Then, using the standard insertion convention, the templates are described by the linking matrices

$$M_D = \begin{pmatrix} 0 & 0 \\ 0 & +1 \end{pmatrix} \quad \text{and} \quad M_{\gamma D} = \begin{pmatrix} 0 & -1 \\ -1 & -1 \end{pmatrix},$$

(26)
Fig. 10. — Extraction of the $x$-induced template. a) Equivariant mask of $A_2$: the fundamental domain $\mathcal{D}$ and its copy $\gamma \mathcal{D}$ are bounded by the dashed line. The Poincaré sections $P_{X^+}$ and $P_{X^-}$ are also displayed. b) Schematic views of the masks associated with $\mathcal{D}$ and $\gamma \mathcal{D}$ of $A_2$. c) Templates of the fundamental domain $\mathcal{D}$ and its copy $\gamma \mathcal{D}$. 
respectively. Note that the template of the fundamental domain is the same as for the fundamental domain of the original attractor. Consequently, if we mod out the symmetry, the template of the reconstructed attractor induced by the $x$-time series is the same as the original Lorenz system. So the two different dynamical systems have a fundamental domain exhibiting the same structure (horseshoe dynamics).

As both fundamental templates topologically characterize the attractor (in the restricted sense), we cannot determine the sign of the local torsion of band 1. Consequently, as the choice of the fundamental domain $D$ is arbitrary (the right wing could be also chosen as the fundamental domain), the sign of the fundamental linking number $\mathcal{L}(N_i, N_j)$ is arbitrary too. For these reasons, we prefer to introduce an unsigned fundamental linking number $\tilde{\mathcal{L}}(N_i, N_j)$. Let us note that the introduction of unsigned fundamental linking numbers is deeply related to the fact that restricted topological equivalence is not topological equivalence in the strict sense (indeed topological equivalence requires the use of signed linking numbers).

We now emphasize the usefulness of working with such a fundamental domain (at least in the present case of inversion symmetry). Due to the inversion symmetry which reverses the local torsion sign, a signed crossing on a wing of $A_x$ is opposite to its corresponding crossing (under the action of $\gamma$) on the other wing. Thus the linking numbers $L(N_i, N_j)$ between two symmetric orbits are always equal to 0. So topological equivalence in the strict sense does not discriminate sufficiently between different dynamics associated with symmetrical orbits. Topological characterization should therefore preferably be performed by considering a fundamental domain and a fundamental linking number.

Thus, as signed crossings are reversed under the action of $\gamma$, fundamental linking numbers are found to be positive in the fundamental domain $D$ and negative in its copy. Indeed, one may check that the fundamental linking number $\mathcal{L}(101, 10)$ is found to be equal to +2 in the fundamental domain while it is found to be equal to −2 in its copy $\gamma D$ (Fig. 12). One may check in Figure 12 that each oriented crossing of $D$ is mapped to an opposite crossing on $\gamma D$ under the action of the $\gamma$-matrix. Consequently, we do not have here a topological invariant which may be equivalently computed in the fundamental domain and in its copy. This problem may be solved by using an unsigned fundamental linking number $\tilde{\mathcal{L}}(N_i, N_j) = | \mathcal{L}(N_i, N_j) |$ which mods out the dependence on the choice of the fundamental domain. No information is lost when we are working with such an unsigned linking number $\tilde{\mathcal{L}}$ since we have no prescription to choose between the positive and the negative signs. Indeed, due to the equivariance properties, to each oriented crossing between a fundamental orbit $N_i$ and a fundamental orbit $N_j$ on the fundamental domain is associated an oriented crossing on its copy but, as the inversion
symmetry reverses the signs of crossings, a positive crossing in \( \mathcal{D} \) is found to be negative on \( \gamma \mathcal{D} \). In particular, on the \( x \)-induced attractor, all the positive crossings counted on \( \mathcal{D} \) are counted as negative on \( \gamma \mathcal{D} \).

For instance, let us determine the fundamental linking number between two couples of fundamental periodic orbits encoded by \((101, 10)\) and \((1, 100)\), respectively. The unsigned fundamental linking number \( L(101, 10) \) is then found to be equal to 2 (Fig. 12) which is therefore equal (within the value of the sign) to the fundamental linking number \( L(101, 10) \) obtained on the original Lorenz attractor (Fig. 8a). The unsigned fundamental linking number is then also in agreement with the template construction (Fig. 8b). Similarly, the unsigned fundamental linking number \( L(1, 100) \) is found to be equal to 1 (Fig. 13) and may easily be checked by a construction on the original template. All unsigned fundamental linking numbers of fundamental orbits whose period is less than 5 have been found to be in agreement with the original fundamental template prediction.

3.4. Attractor Induced by an Invariant Variable. — The observable is now the invariant variable \( z \). This variable contains no information about the symmetry and, consequently, the attractor reconstructed from this variable does not present any symmetry property. The reconstructed space is spanned by the set of coordinates \((X, Y, Z) = (z, \dot{z}, \ddot{z})\). Thus the topological characterization of \( A_z \) is conducted following the procedure used for the Rössler system. This reconstructed attractor has a first-return map to the Poincaré set \( P_Z = \{(Y, Z) \in \mathbb{R}^2 \mid X = 30, \dot{X} > 0\} \) which is similar to the original Lorenz map (Fig. 14).

As in the previous cases, the increasing branch is associated with a strip without any local torsion labelled by symbol 0, and the decreasing branch is associated with a strip with a \( \pi \)-twist and is labelled by symbol 1. Periodic orbits are extracted and encoded following this symbolic dynamics. Attractor \( A_z \) is a simply folded ribbon with a structure similar to the Rössler
Fig. 13. — Plane projections of the fundamental orbit pair \((1, 100)\) in the fundamental domain \(D\) and its copy. \(\tilde{L}(1,100) = \frac{1}{2}| + 2| = 1\).

Fig. 14. — First-return map of the \(z\)-induced attractor.

A non fundamental template \((\text{template on the whole attractor } A_z)\) and a fundamental template, pointing out once more the interest of the concept of restricted
Fig. 15. — Plane projection of the orbit couple (101, 10) of $A_z$: $L(101, 10) = \frac{1}{2}(+4) = +2$.

topological equivalence.

Orbits encoded by (10) and (101) are displayed in Figure 15. The linking number $L(101, 10)$ is given here by the half-sum of the oriented crossings, and is found to be equal to +2 as on the original attractor. The linking number is preserved and the reconstructed attractor is topologically equivalent (in the restricted sense) to the original one.

Indeed, the one wing attractor $A_z$ may be viewed as an explicit representation of the fundamental domain $D$ of the original Lorenz attractor, i.e. $z$-variable is a useful variable to analyse the dynamical behaviour of the Lorenz system. Naturally, information about symmetry properties is not available from this observable. Nevertheless let us note that this variable is always used to compute power spectra, first-return maps, ... We have shown the deep root of this common habit, i.e. $z$-time series contain information about dynamics projected on the fundamental domain $D$ which is often implicitly used to analyse the Lorenz system.

Indeed it is well-known [40, 41] that power spectra computed from the different variables of the Lorenz system are not equivalent (Fig. 16): power spectra from equivariant variables ($x$ or $y$) provide no peak while the power spectrum from the invariant $z$-variable provides a peak at $f_0 = 1.30$ Hz.

Let us recall that when a power spectrum of a variable $w(t)$ is composed of sharp peaks superimposed on a broad background, the linearity of the Fourier transformation implies that $w(t)$ can be written as the sum of a periodic and a nonperiodic part:

$$w(t) = w_p(t) + w_{np}(t)$$

Consequently, power spectra of equivariant variables reveal that no periodic components are really present in these variables. Conversely, a principal frequency $f_z$ equal to 1.30 Hz may be exhibited from the power spectrum of the invariant $z$-variable (Fig. 16). This implies that a phase coherence [40] appears on the fundamental domain (remember that the invariant $z$-variable naturally projects the dynamics on the fundamental domain). In other words, a
significant pseudo-period may be defined by the average time between two consecutive intersections with a Poincaré section $P_y$ in a fundamental domain of the original attractor. We found such a pseudo-period to be $T_0 = 0.75 \pm 0.10$ s in very good agreement with the one estimated from the power spectrum of $z$: $T_z \approx 0.76$ s. The invariant $z$-observable provides therefore pertinent dynamical information on the Lorenz dynamics.

Imagine now that the $y$-time series is recorded. One may easily check that the observable $y$ is equivariant in a simple way, i.e. that its time series is globally invariant by multiplying by $-1$ (this requires a prior reconstruction of the strange attractor to detect the equivariance). Consequently, we know that the original attractor may be tesselated by a fundamental domain $D$ and one of its copy $\gamma D$. Even if we do not know whether the symmetry is of the axial or inversion type, we may safely use the absolute value of the time series to compute the power spectrum and find the representative frequency of the original system. If this is carried out with the $y$-time series of the Lorenz system, then the power spectrum of $|y|$ presents a peak at $1.31$ Hz which is in good agreement with the pseudo-period $T_0$ exhibited on the fundamental domain $D$ (Fig. 17). Let us note that we might similarly use $y^2$ instead of $|y|$.

4. Conclusion

We investigated the topological characterization of reconstructed attractors in the case of 3D-embeddings. The reconstruction technique used relies on derivative coordinates but our conclusions extend to other kinds of embedding. We focused our attention on the case of equivariant systems and developed a specific topological characterization modding out symmetries leading to the concept of restricted topological equivalence when the analysis is performed on
Fig. 17. — Power spectrum of the absolute values of the y-time series of the Lorenz system. A principal peak is recovered at the same frequency than on the power spectra of z.

a fundamental domain. Relying on specific examples, we demonstrated that restricted topological equivalence between original and reconstructed attractors may hold even if topological equivalence in the strict sense does not hold. Our results confirm the importance of the topological properties in the analysis of dynamical systems. For experimental cases however, it may be difficult to state if the reconstructed portrait is correct or not. Therefore, detecting pathological topology, such as symmetry or "8"-configuration, in experimental systems appears as a topic of great interest (in detecting the symmetry, see [42]).

Acknowledgments

We are indebted to anonymous reviewers for their extremely helpful recommendations. In particular, one of them allowed us to explicitly introduce the concept of restricted topological equivariance which considerably clarifies the discussion. Such a clarification which is not only a matter of terminology is not available in reference [35]. Another reviewer helped us to further clarify the discussion by introducing some concepts in a simpler way than in the original version of the manuscript. We wish to thank D. Moscato for the helpful English corrections of the manuscript.

References

[33] Letellier C., Caractérisation topologique et reconstruction d’attracteurs étranges, PhD dissertation, CORIA, LESP, Rouen, France (1994).
[39] The template here considered differs from the two-branch template considered by Birman and Williams in that it is not a braid template.