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Abstract. A kinetic model of heterogeneous gel formation and
a

method to calculate gel
stiffness

are
proposed, with application to the elastic properties of polyacrylamide gels. The

model is based
on

assumptions about nucleation and growth of dense regions, governed by the

concentration of monomer
units (po) crosslink agent (co and rate constants for chain propagation

and curing. It is shown that at low co the polymer and crosslink densities inside and outside

an
inclusion are almost the same and that the gel may be regarded

as
homogeneous. But

the difference between densities increases sharply with co, giving growth of heterogeneities.
Calculation of the elastic modulus

was performed using a
self-consistent method. Stiffness

grows with po at fixed co, but goes through
a maximum as a

function of co at fixed po. The

theoretical analysis is in qualitative agreement with the experimental data.

1. Introduction

The elastic modulus E of a polymer networks under uniaxial tension may be described by the

James and Guth approximate expression for the energy [1,2j:

F
= l~ 4l -1) N~kT(I) + I( + I() 11)

2 2

E
=

~~
=

4l
)

N~kT (2)
°( 2

were 4l is the crosslink functionality, N~
=

crosslinks density, k
=

Boltzmann's constant, T
=

absolute temperature, (
=

deformation ratio in Cartesian directions I
=

1. 2, 3. So, if the

effect of entanglements is negligible, then the stiffness of the system is proportional to the

crosslink density. If one identifies N~ with the crosslinking agent concentration co, there is a

linear E co dependence. But in reality not every molecule of the crosslinking agent forms an

effective knot of the network, even in the case when it is incorporated into the chain. There

are three reasons for this phenomenon: I) the real crosslinking functionality ma» be less than
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4l; 2) some molecules from short branches or loops and so, the effective functionality is less

than 4l; 3) the crosslinking agent molecule disposes in sol fraction.

But one expects always a relationship between E and co such that E is an increasing function

of co. Such is the case for several gels [3j. However the polyacrylamide gels are exception: E(co)
is not a monotonically increasing function but rather exhibits a maximum [4-6] at a polymer

volume concentration po of about io~o. For lower polymer concentration, E saturates when

co increases, and for larger po, E(co) increases with co, but with an
inflexion point [6j. It

is the goal of this paper to propose an explanation of this behavior in connection with the

inhomogeneities of these gels.

As it is well known, the problem of inhomogeneities in gels is very important [7]. The simple

and naive picture is to see these inhomogeneous region as spherical domains with crosslink

molecule and polymer densities larger than their mean values. Application of this model to

polyacrylamide gels was made by Weiss et al. [8] and more recently by Cohen et al. [5]. This

last group used the model to interpret their small angle X-ray scattering intensity, as the sum

of a Gaussian (from which the mean size of the dense regions is obtained) and a Lorentzian

(which permits extraction of the coherence length).

A less naive picture was proposed by Bastide et al. [9], in particular to explain the "butterfly"
effect. The regions with higher crosslink density are seen as fractal objects. This model was

used by Mendes et al. [10] to analyze gels for which the small angle neutron scattering intensity

cannot be interpreted as the sum of a Gaussian and a Lorentzian.

In this paper, we shall adopt the first picture in spite of its naivety. We can consider the

results of reference [5] as reasonable support for this approach. Our model consists of two

basic steps. The first is to determine the size of the inhomogeneous regions (seen as spherical
inclusions), and the density of the polymer and crosslink molecules in the inclusions and in the

matrix, as functions of the mean polymer and crosslink molecule concentrations. The second

step is the calculation of the Young modulus of this heterogeneous structure.

It is clear that the Young modulus of the inclusions will be larger than that of the matrix.

In the model of Bastide et al., it was supposed that the high crosslink density regions are un-

deformable, ii.
e.

their elastic modulus is infinite), tending to increase the total Young modulus

of the gel. But this is associated with a decrease of the Young modulus of the matrix. It

was proposed in reference [6] that these two opposing mechanisms may explain the maximum

of E in the polyacrylamide gels. However, this implies so strong a depletion of the crosslink

molecules in the matrix that it is very unlikely. We shall add a new ingredient to our model.

It is based on the well known result that the introduction of crosslink molecules in a polymer
in solution is limited and depends on the polymer concentration. The depletion process men-

tioned above ii. e. the fact that the polymer and crosslink densities are low in the matrix) may

decrease the Young modulus of the matrix because its polymer density becomes too low to be

able to accept all the crosslink molecules in the network. Thus, we expect that the polymer

concentration in the matrix will decrease when the mean crosslink concentration increases. As

shown below, this is one of the results of the model.

Before presenting the details of the model, we should mention the work of Schimmel and

Heinrich ill]. They consider highly disperse gels of the network strands and they observe

a decrease of the elastic modulus with increase of the molecular weight distribution. They

interpret their result as the decrease of the effective number of active network junctions. We

cannot exclude such a mechanism in the case of polyacrylamide gels. Nevertheless, we think

that our model is well-adopted to the case of strong spatial fluctuations of the polymer and

crosslink concentrations. Our suggestion is that such is the case for the polyacrylamide gels [12].
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Fig. I. Blob picture of the polymer network.

The paper is organized as follows:

1. In order to understand the influence of the polymer concentration on E, we propose a

determination of the effective crosslinked density ce~. For the sake of the simplicity, we

shall neglect the detail mechanism of the real crosslink functionality diminution.

2. A kinetic model of the nucleation of the inhomogeneities is presented: it permits us to

determine the radius of the inhomogeneities as well as the crosslink molecule and polymer
concentrations.

3. The third step is the calculation of E from the results of the self-consistent method used

in the theory of composite materials. The gel is seen as a mixture of a soft matrix and

stiff inclusions which are the spherical inhomogeneities.

4. A comparison of the results of the model is made with the experiments. We get good
qualitative agreement.

2. Effective Crosslink Density

We begin by finding the effective crosslink density ce~ in a polymer network with concentrations

c and p of crosslink molecules and monomer units. This network, with chemical and physical
junctions, may be represented by a system of touching blobs (Fig. I). The number of contact

points of the blobs is the upper limit of the effective crosslink density ce~.

The effective crosslink density ce~ cannot exceed the density of contact points c~p between

chains. Let us estimate the latter, following the scaling concepts of the de Gennes [13] and

neglecting loops, short branches and sole fraction. Flory [14] obtained an elegant and suffi-

ciently exact estimation of the linear macromolecule blob radius Rb in terms of the number N
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of Kuhn segments in good solvent:

Rb ~ aN",
u =

3/(d + 2) (3)

where d is the dimension of the space (u
=

3 IS in the three-dimensional case). The represen-

tation proposed leads to the following scaling relations for the density of contact points and

the monomer unit density:

~~~ +w =

~~3 ~T-9/5
~~j~3

b

l~

~
~~

~~ ~~~
~~~

b

(4) and is) give the correlation between the densities as

Ccp Cf a~~/~P°/~ 16)

and the chemical distance between neighbor contact points as

N Cf P/Ccp 17)

According to the results above, we have:

ce~ < min(c, c~p)
=

min(c, a~~~p%~) (8)

Let us treat (8) as an equality and assume that every contact point is either an effective crosslink

or an entanglement. Edwards and Vilgis [15] suggested an additive expression for the effective

crosslink and entanglement contributions to the polymer-network free energy. However, in the

present work, we do not take into account the entanglements because their introduction will

not give a dramatic change in the results. The model is only qualitative at the present stage.
So, we shall describe the stiffness of the homogeneous gel by (2) with (8) taken into account:

E
=

kTce~
=

kTmin(c, a~~/~p%~) (9)

The expression (9) is one of the important results of this model. It shows (as expected) that one

cannot introduce an unlimited number of crosslinks in a polymer network. One consequence
of this relation is that one may observe saturation of the Young modulus with increasing

crosslink content. When one considers the variation of ce~ as a function of c, for a given
polymer concentration p, one has two regions. As long as c < a~~/~p°~,

ce~ is equal to c.

However, if c > a~~~p°~,
ce~ is constant and equal to a~~~p%~ This means that there are

not enough contact points for the crosslink molecules. Thus ce~(c) is linear for small
c and

tends to saturate. The saturation value of ce~ increases like p°~

3. Kinetic Model of Inhomogeneities Formation

3.I. ESTIMATION OF THE POLYMER AND CROSSLINK CONCENTRATIONS INSIDE DENSE

REGIONS. As mentioned above, our starting point is the formation of dense spherical re-

gions which represent the inhomogeneities. We begin by estimating the polymer and crosslink

concentrations inside the inhomogeneities. We shall assume that further growth of a dense re-

gion occurs by accepting new monomers and crosslink molecules to its surface without change

in the densities.
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The following method for this density calculation is proposed. We use a simplified chemical

model of polymer-network formation. It includes two kinds of reactions between monomer

(MG) and curing agent (CAG) groups:

I) Polymer chain propagation (MG+MG), rate constant kp.
ii) Polymer chains curing (MG+CAG), rate constant k~.

Further we shall denote concentrations by small letters and corresponding amounts in the

volume by large ones. Subscripts or m refer to the region (inhomogeneity
or matrix ). Subscript

o refers to the initial concentrations, (or to the mean values); po and co to monomer units

and crosslink agents respectively. We shall distinguish between monomer units and crosslink

molecules and their chemically active groups. It is assumed that a monomer unit has two

active groups and that a crosslink agent molecule has four. pi, ci, li, Cj, pm, cm, Pm, Cm

are concentrations and numbers of molecules in the network inside the inhomogeneity (dense
region) and the matrix (rare region), po, co, P and c are initial and current concentrations of

active groups. (p and c do not have the same meaning as in the preceding section). In order

to avoid any confusion one should keep in mind that, in any material balance equations for

chemical groups we shall multiply quantities of monomer unit molecules by 2 and of crosslink

agents by 4.

The kinetic equations for the increments A li of monomer units and /hCi crosslink molecules

quantities per unit value of the interface area are of the form:

An
=

spa(kpo.spy + k~l.sci)At (lea)

ACj
=

scok~o.5pjAt (lob)

The surface factor s, which has the dimension of a length, is introduced in order to take into

account specific conditions for chemical reactions between pi and po, Pi and co, cj and po on

the interface. Coefficients o.5
=

(o +1)/2 and 1.5
=

(o +1+ 2 + 3)/4
are chosen as mean

values of chemically active groups on the surface of the network region. We assume that every

contact point is an effective cro&slink inside inhomogeneity. It makes possible to calculate the

chemical distances N and N' between neighbor crosslinks inside the dense region and the new

layer:

pi (lla)~
ci

,

AC po (kppi + 3ci)
jiib)~

~lCi cokcPi

Estimates of the crosslink and polymer densities in the dense region may be obtained from the

assumption:

~ ~'
) ~

~

~)~~ ~~~~
~

~~
~~~~

pi =
p(

=

a~~N~~/~ (13)

ci = c( =

a~~N~°/~ (14)

The average distance I between neighbor contact points in the gel may be estimated as:

N c~
~° (IS)
co
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Fig. 2. Shell model of
a

composite material made of stiff inclusions in a
soft matrix.

The degree of heterogeneity is likely determined by the competition between two chemical

reactions: chain propagation (constant kp) and crosslinking (k~). It is seen from (12), that if

kp » k~ we shall have N of the order of I but the active crosslink reaction (kp < k~) leads to

the formation of dense regions: N ci
li.

3.2. GROWTH AND FORMATION OF HOMOGENEITIES. The polydisperse model [16], (Fig. 2)
of composite materials is used for the description of gel's geometry and stiffness. It assumes

that the dense regions are of the same (spherical) shape and are placed with their spherical
shells (radius of every shell is proportional to the radius of internal dense region) without

intersections (see Fig. 2). Each cell of this structure is similar to any other and may be

analyzed separately.

The proposed continuum model of gel structure formation is based on the following points:

I) Inhomogeneities nucleate at the beginning of the process. Their densities cj and pi are

determined by (12-14) and remain constant further.

ii) Propagation of dense regions occurs through their surface as mentioned above:

j
=

4KR~sp(o.skppj + 1.sk~cj) (16a)

~~
=

4KR~s(o.sk~cpj) (16b)

In (16a) and (16b), R is the radius of the inclusion, li and C~ are respectively the monomers

and the crosslink molecule quantities in the dense regions, and p and c are the concentrations

of the active monomer and crosslink groups. Since pi and ci are taken constant, one has

id li /dt)
=

(pi /cj)(dcj /dt). This can be seen in the following way. By definition id l~ /dV)
= p~

and (dcj/dV)
= c~, when V is the volume of one inclusion. Equivalently, one can write

id fl/dt)
=

pi(dllldt) and dci /dt)
=

ci(dV/dt). Eliminating (dV/dt) gives the relation

S~iS ~~~~
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This implies that the two equations (16a) and (16b)
are not independent. The variation of li

and Cj will be controlled by the slowest process given by equations (16a) and (16b):

dli I 1(~ ~
3k~c~ k~pij

~ ~2 ji~$ " j8Pimm P
P ~,~ ~ ~

~~
= sci min

p kp
+

~~~~

,

~j
4KR~ (18b)

dt 2 Pi Ci

From li
=

4KR~pj /3 and equation (16a), one gets

dR I 1(~ ~3k~cj)
fij

j~~~$ 2
~ ~~~ ~

~
Pi '

Ci

iii) The matrix network is formed by polymerization in the bulk governed by the following
kinetic equations:

~))
=

kpp~ + jk~pc (20a)

l'~
=

~
k~pc (20b)

where pm is the concentration of chemically passive monomer units and cm is the concentration

of crosslink molecules in the matrix. Taking into account that Pm
=

4K(R$ R~)pm/3, and

Cm
=

4K(R$ R~)cm /3, where Rm is the radius of the shell, one gets

iv) The active polymer concentration, p, and crosslink molecule concentration, c, are dispersed

in the matrix region. Some of them belong to the network and the rest to the mobile monomer

units and crosslink molecules. Material balance gives:

)R$po
= jR~(2pj) + 2Pm + )(R$ R~)p (22a)

~~R$co
=

~~
R~(4ci) + 4Cm +

~~ (R$ R~)c (22b)

It is simpler to use reduced variables: fl
=

R/Rm, Am
=

Pm IRS, Cm
=

Cm IRS, and §
=

s
/Rm. Such new variables do not change the concentrations, and we have the following system:

~
=

§min
p kp

+
~~~)

,

~j
(23)

~t 2 Pi Ci

~j'~ =

~~~
Pm ()

+
~

Ii fl~ )vlkpv + kc c) 124)

~jf
= ~~(~ Cm

~
+

)
Ii fl~)

(~~
(25)

)po
"

)fl~(2pj) + 2flm +
)

ii h~)p (26)

~~
co "

~~h~(4cj) + 4©m +
~~(l h~)c (27)
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The equations (23-27) form a system which permits us to calculate the various quantities of

interests Am, Cm and h. Since we are interested only in static results, we solve the system

numerically in the time segment o < t < tmax, sufficiently long for stabilization of the structure:

dh/dt
=

o, p =
o or c =

o, and then the value of the quantity, 4~(1- h~)p/3
was added to

Am instead further integration up to infinite time. The initial conditions are clearly zero for

all the time dependent quantities it, Am, Cm and p = po, c = co

4. Calculation of the Elastic Modulus

We cannot assume that the effective Young modulus of the gel will be the average of the Young
moduli of the dense regions and of the matrix. This is possible only if they are not too different.

One of the many composite-stiffness theories may be applied for the calculation of the gel
stiffness. We assume that both dense and rare regions are

incompressible. Their elastic moduli

Ej, Eni are described by (9);
we use the self-consistent field approach ill], which coincides

formally with the bottom Hashin-Shtrickman estimate [18]:

~ ~~ l~ ~
Em + 4ar(Ei Em) ~~~~

where ad "
h~ and or =

ii fl~) are the dense inclusion and rare matrix volume contents.

In conclusion of this section it should be noted, that the above approach is restricted by the

condition of matrix type composite structure, I.e. a region of low density and separation of

dense inhomogeneities. Otherwise (as likely occurs at high polymer content) approximation
(28) is not valid and the percolation approach [19] should be applied.

5. Results and Discussion

The peculiarities of polyacrylamide-gel mechanical behavior are revealed in reference [6]. At

sufficiently low polymer content (p < 18 vol.$l), the E co relationship passes through a

maximum, shifted to larger Emax and cmax with increase of po. For large polymer concentration

(20 and more
vol.~) the elastic moduli increase with crosslinking agent concentration. The

curves have the same initial slope for po < 12 vol.Sl, well described by the James and Guth

theory Ii.2].
We shall explain how we used the model in order to calculate the Young modulus of the

gel. First, we have to chose values of po and of co (mean value of the polymer and crosslink

densities). In the first step we calculate the five basic quantities of the model: the polymer and

crosslink densities in the dense regions (pi and ci) through equations (12), (13) and(14); the

polymer and crosslink densities in the matrix (pm and cm) by solving the system of equations
(23-27); the radius fl. For that we have to chose explicitly the parameters of the model. In

a second step, we calculate Ei and Em with the help of equation (9), taking kBT
=

I for the

sake of simplicity. Finally, Ee~ is calculated by equation (28).

The parameters of the model are:

I) The rate constants kp and k~;

it) The constant a in equation (3);
iii) The coefficient s (Eq. (10)). This coefficient has the dimension of a length and it can be

seem as the thickness of the active layer at the surface of the dense region.
iv) Radius of the shell Rm. s and Rm enter only through their ratio b.
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Fig. 3. Variation of the polymer densities p~ inside the heterogeneities and pm inside the rare matrix

as function of coo I. po "
0.06; 2. po =

0.08; 3. po "
0.10; 4. po "

0.12. p~; pm.

The choice of the parameters was made in order to get good qualitative agreement. Since we

are not interested in the dynamics of the process, only the ratio k~ /kp is important; we varied

it between 1.25 and 5. b is clearly much smaller than I, but its exact value does not have a

strong influence on the results. The last parameter a is also a characteristic length of order of

some angstroms [9]; a cannot be taken too small because we found in some cases unphysical
results. po and co are expressed in relative volume, instead of a number of molecules by unit

volume and we translated the value of a in these units for the case of the polyacrylamide gels.
If a is taken to one, this corresponds to a length of 5 1.

We consider now the variation of the concentration pi and c~ inside the heterogeneities, and

pm and cm in the matrix as functions of po and co, the mean concentrations. The general
trends are the following: pi and cj increase with po and co- cm increases with co and depends

very weakly on po. Finally, pm decreases if co increases but increases with po. Holn-ever, we

have pm > pi for low co and pm < pi for larger co Clearly, the model is meaningful if pm < pi.

Thus we have to choose k~ /kp relatively large. This reduces the region where pm < pi to the

lowest values of co < o.oos).
In Figure 3, we show the variation of pi and pm ~ersus co, for several values of po and in

Figure 4, we show the variation of cj and cm, for the following values of the parameters: kp
=

2,

k~
=

lo. §
=

o.06 and a =
o.9. We note that cj is larger than cm by one order of magnitude.

The decrease of pm when co increases is an important feature of the model. Because of

equation (9), it means that the matrix will not always be able to include all the crosslink

molecules. Consequently, it results a decrease of Em when co increases.

The dependence of R with po and co is as follows (Fig. 5): it increases with po but decreases

if co increases. In some cases (small po), R exhibits a minimum. We have to recall that fl

is the size of the inhomogeneities relatively to their mean distance. If fl decreases, it can be

because of the diminution of their size or an increase in their distance, or both. At the present
time, there are no experimental results oft

as we defined it (in Ref. [5], the absolute size R

is given).
In Figure 6, we show the effective crosslink density ce~(m) in the matrix, as defined by (8).

The Young modulus Em of the matrix is directly proportional to ce~(m).
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Fig. 4. Variation of the crosslink molecule densities c~ in the heterogeneities and cm inside the rare

matrix as
functions of co- 1, 2, 3, 4, as

in Figure 3.
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Fig. 5. Radius of heterogeneity versus co for different po. 1. 2, 3, 4 as in Figure 3.
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Fig. 6. Effective crosslink density in the matrix
as a

function of co- 1, 2, 3, 4 as in Figure 3.

E efl

4

o o
z

~
O O02 .004 006 008 .OIO

~°

Fig. 7. Young modulus of the gel
as a

function of co- The shape of the curves is in qualitative

agreement with the experiments. 1, 2, 3, 4 as in Figure 3. Experimental results: (Zi) for po "
0.08,

(o) for po "
0.13.

ce~(m)
as a function of co is characterized by a break in the slope. This can be easily

understood considering equation (8). As long as co < a~~~p$/~, ce~(m)
= co and increases

with co. But, if co > a~~/~pi~, ce~(m)
=

a~~@pi~ which is a slowly decreasing function of co

The effective Young elastic modulus is calculated with the help of (28) where Ej is taken equal

to cj and Em to ce~(m) (Fig. 7). Ee~ is very similar to ce~(m) although in the inhomogeneities

ci is much larger than ce~(m). This is because in (28) the influence of the heterogeneities is

important only for value of fl
near I. We indicate also the experimental results for po "

8$l

and 13Sl. One can see that the model reproduces well the dependence of Ee~ with co However,

the calculated values are larger than the experimental ones.

The important result of the paper is the variation of ce~(m) with co To understand physically

this behavior, we have to recall that for low co, Pm * Pi and the system can be seen as

homogeneous, and ce~(m)
r~ co- However, for larger co, the quantities cm and pm will be
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such that ce~(m) will be controlled only by pm which decreases with co- The formation of

the heterogeneities implies that the matrix has a low polymer concentration which gives a low

value of ce~(m). The exact value- of the Young modulus in the heterogeneities has almost no

influence on the results contrary to what was postulated in reference [6].
We are well aware that our approach is a simplification by the following reasons. First, the

system is very probably heterogeneous at many scale, when we suppose that the heterogeneities

are spherical with the same radius R. For this reason, we prefer to consider R as a mean value

of the radius of gyratioq of the heterogeneities, as in the experiments presented in reference [5].
Secondly, the heterogeneities may have more complicated shape. However, one can propose

that the growth of the heterogeneous regions takes place in an analogous manner as in Eden

model. In this model, aggregates are compact with a constant density, with a shape near a

sphere, as we postulated.
For these two main reasons, we cannot expect more than a good qualitative agreement with the

experiments. We do not mention the -possibility of percolation of the heterogeneities because

this point have been already discussed in reference [6].
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