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Abstract. A slithering snake algorithm is combined with
a

binding and breaking chain

algorithm to simulate the static behavior of living polymers according to Cates' description. It

is shown that this simple two-dimensional simulation on a square lattice gives good agreement
with the mean field theory. However, the large amount of small contour length chains for small

values of the
mean average length (L) appears to be one of the reasons for the discrepancies

observed between the simulated results and the mean
field theory. This finding could explain

disagreements between experimental observation and theory. Also, the results are not in favor

of
a

swelling of the greater chains by the smaller one.

Introduction

The so-called "living polymers" are systems in which polymerization is believed to take place
under condition of chemical equilibrium between the polymers and their respective monomers.

These long lone-dimensional) aggregates break and recombine reversibly. Therefore, they are

seen as linear macromolecules in equilibrium with respect to their molecular weight distribution.

A number of examples have been studied, including liquid sulfur [1-3] and selenium [4], poly
(a,methylstyrene) [5], polymer-like micelles [6,7] and protein filaments [8].

A lot of theoretical works within the mean field approximation describe the dependence of

the length and distribution with temperature and concentration.

Due to experimental difficulties [7] the properties of living polymers still pose a number of

questions. Controversial results about the extent of the growth in micelles with decreasing
temperature or rising density are reported [9-12]. However, no direct measurements of the

molecular weight distribution have been published yet.
Given the shortcomings of an approximate analytical treatment (MfA) and the difficulties

with the laboratory measurements, it is conceivable that numeric experiments, being exact

within the framework of the respective model and able to account explicitly for various factors

which influence experiments, might help much in understanding the thermodynamic behavior

and the properties of living polymers. However, up to now only a small number of simulational

(") Present and permanent address: INRA Versailles, Station de Science du Sol, Route de Saint-Cyr,
78026 Versailles Cedex, France (e-mail: rouault©versailles.inra.fr)

© Les #ditions de Physique 1996



1302 JOURNAL DE PHYSIQUE II N°9

studies [13-18] have been carried out. Indeed, while the connectivity of polymer chains and the

resulting slow dynamics render computer simulations a demanding task in its own terms, the

scission-recombination processes, which are constantly under way in living polymers, impose
additional problems on computational algorithms.

Until now, most of the computational research was focused on the transition between an

oriented ordered phase and a disordered state [1,13-18]. In parallel, theoretical works show

that reversible aggregation of monomers into linear polymers exhibits critical phenomena which

can be described by the n -
0 limit of the n-vector model of magnetism for linear chains [3,19].

Since Cates and co-workers [7, 20-24] have developed a mean-field description of living poly-

mers both for dynamic and static properties, discrepancies were found between the mean field

results and the simulation on a simple square lattice in two dimensions. The origin of those

differences comes from the inclusion of interactions in the system studied by computational
methods Ivan der Waals interactions without binding of the monomers). In fact, the computa-

tional models were not suited to study the "simplest" case described by Cates and co-workers.

In the following, it will be shown that a simple two-dimensional simulation on a square

lattice also gives good agreement with the mean field theory (at least for the static properties)
for a canonical ensemble.

1. The Model

Various two-dimensional models have been used IF-model, q-state Potts model) [13,15,17,18]
directly inspired by magnetic models. These "grand canonical" simulations define a system with

three parameters: a, the stiffness, w, the energy of the van der Waals interchain interaction,
and V, the energetical value of a covalent bond (or their equivalent magnetic counter parts). In

the Monte Carlo (MC simulations so far [17,18] the polydisperse system of polymer chains was

mapped on a Potts model whereby different spin values were taken to represent bonded and

non-bonded monomers as well as vacancies on a lattice. Among all possible models presented
by Cates and co-workers to describe the dynamics of combination of monomers, only two deals

with relaxation of the chain distribution: the one presented here and its variant, the end

evaporation [20]. This last one has shown a very slow kinetic [27] of relaxation and is then of

no use for the study of static properties.

In previous works, the study of the living polymer system using Bond Fluctuation Model

(BFM) [28, 29] in three dimension has shown excellent agreement with the mean field theory
[25,26] when the van der Waals interaction is set to zero ii- e w =

0), so that no phase separation
into dense and dilute components could take place.

The first results indicate that the &fFA description provides an amazingly good semiquan-
titative picture of the properties of living polymers at least for the case when non-bonded

interactions between monomers may be neglected as compared to the bond energy along the

backbone of the macromolecules. However, memory restriction reduces the largest lattice size

which can be currently studied with the BFM to a 30 x 30 x 30 cubic lattice. Moreover, it is

not clear if the dynamics of the bond fluctuation model in two dimensions for living polymers,
applied directly in the same way as for the three dimensional system, is correct, entanglement
effects arising in this case [29] due to the binding algorithm.

Hence, for the present work, dealing only with static properties, a slithering snake based

algorithm has been developed. The slithering snake algorithm is very efficient in dense systems
and allows fast relaxation, both of the chain conformation and system configuration. The

same algorithm as in the BFM based program is used for the scission recombination processes

of the monomers. The effect on the program structure and speed when changing from the
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slithering snake move to the BFM move is the same as the one extensively described in refer-

ence [30] between Madden's and Mansfield's version of their pseudokinetic mechanism for the

rearrangement of chain segments.
Only one monomer at a time may be present on a lattice site (excluded volume interaction

between monomers). Those sites of the lattice which are not occupied by monomers are

considered empty (vacancies) and contribute to the free volume of the system.

An energy -V IV > 0) is set for the creation of a bond between monomers.

In the present study the ends of a given polymer chain are not allowed to bind together. This

last condition avoids the formation of rings [13,14] which gives a different length distribution

for even and odd chain length (in monomer units) with temperature.

This is not really a constraint if we consider micellar systems in which rings are not likely

to occur [7].
The present investigation was focused exclusively on the process of equilibrium polymeriza-

tion of entirely flexible chains, setting w =
0 and

a =
0, so that no phase separation into dense

and dilute components should take place.
A MCS (Monte Carlo Step) is organized as follows:

ii) The chains are allowed to perform a reptation move.

iii) A monomer is chosen at random. If the monomer happens to be at the end of a chain, an

attempt is made to create a bond with another monomer which might be present on any one

of the four neighboring sites also chosen at random. If the end of another polymer is present

on the chosen neighboring site, the Metropolis algorithm [28] is applied, that is, a new bond is

created if the value of a random number between 0 and 1 is smaller than Min 1, exp
/T~

(iii) Finally, a monomer is chosen at random. If a bond on the right of the current monomer

exists, it attempts to break, also according to the Metropolis rule.

During one MCS one carries out iii) (iii) as many times as there are monomers in the

system. The order in which these sequences are carried out does not play any role.

The move sequence is based on the number of polymers, but the scission and recombination

process must strictly depend on a random choice of the monomers.

Such a remark was not necessary for the BFM based programme, because move and the

scission and recombination process were both built on the random choice of a monomer. If

the scission and recombination process depends on the (fluctuating) number of chains, the

probability of a binding or breaking trial is no longer the same with the awaited consequences.

A number of structural properties are sampled during the simulation: mean average values

like the mean average contour length (L) and the mean average square end-to-end distance

(R() (an average over all the chains) which can be estimated experimentally, and more precise
data, like the distribution of chain lengths or the mean square end-to-end distance R( of chains

of given length L which has not been yet given experimentally. The mean square end-to-end

distance is the mean value of the square end-to-end distance taking into account the chains

only I. e. a monomer is a chain without any bond and has an end-to-end distance radius of zero.

The distribution of chain lengths (in monomer unit) was also recorded in order to check if the

system was sensitive to the finite number of monomer in the system [27]. The system takes

usually about 2500 MCS in order to be equilibrated. After equilibration, measurements of

data were performed in intervals of 2500 MCS and about 500 independent data sets have been

sampled. The simulations have been carried out on a 100 x 100 square lattice with periodic
boundary conditions. The absence of finite size effects was checked (for lattice size 50 x 50 and

200 x 200) but it has already been proved that such effects are absent, at least for boxes greater
then 14 side length, for both simulation in two dimensions [18] and with bond fluctuation model

in three dimensions [25]. The start configuration consists of non-bonded monomers.
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Because the Boltzmann factor is a function of
I£

only la
= w =

0), all the simulations
.B

with the same

£
ratio give the same results [25]. The slithering snake algorithm [28]

B

moves the chains independently of their contour length and is therefore dynamically incorrect

but gives rather quick equilibration of the coils. On the other hand, the breaking of the chain

reduces the non-ergodicity of the algorithm [28, 29]. In fact, it should suppress it completely:
it has been proved [31] that the slithering snake algorithm with a non-N conserving algorithm
is ergodic. This algorithm, allowing the chain to reduce or grow from one unit at one end is

similar to the end evaporation model [20].
The results obtained with this simulation are then only correct for static properties. In

contrast to Pott's model-like simulation [18], the one-dimensional aggregates are treated as

polymer chains in the sense that during a move the connectivity of the monomer in the chain is

conserved. This simulation could be seen as a development of the algorithm of references [16, 32]
for living polymers.

In general, a high concentration system of polymers is non-trivial to simulate [23, 32] and

some authors have artificially introduced a chain breaking and recombination process to study
them [30,33, 34]. The study at high concentration is easier with living polymers and is carried

out in this article to some extent.

2. Brief Summary of the Mean Field Approximation Treatment of Living
Polymers

At the level of mean-field approximation in the absence of closed rings, one can write the free

energy for a system of linear chain as:

~
=

~j
c

(L, T)
In

c
(L, T) (L -1)

~
(1)

B
~

kBT

where c
(L, T) is the molecular weight distribution for chain length L. Minimization of equation

(1) with respect to c
IL, T), subject to the condition:

#
=

~j L c
IL, T) (2)

with # the density of the system yields:

C iL> T)
- exP

16
+
ill

exP

lil

~~~

~
~~~ ~2~T ~~~

This result should be valid when correlations, brought about by the mutual avoidance of the

chain, are negligible.

3. Results

The 1/T curve vers~ts log (L) is plotted in Figure 1. It presents a slope of0.96 Gt V/2 for V
=

2

in agreement with [7]. In another publication, the curve was not a straight line [18] and this

was only due to a non-zero value of w.



N°9 A MONTE CARLO STUDY OF LIVING POLYMERS 1305

5.5

5

4.5

~
4

I
3.5

~ 3

2.5

2

1.5
1.5 2 2.5 3 3.5 4 4.5 5

1/T

Fig. I. Variation of (L) with inverse temperature, #
=

0.25.

4.2

4

3.8

£ 3.6

v

11 3A

3.2

3

2.8
-2 -1.8 -1.6 -lA -1.2 -1 -0.8 -0.6 -0A -0.2 0

jog»)

Fig. 2. Variation of (L) with total density #, T
=

0.27.

The log-log plot of (L) vers~ts the concentration # of monomers in the system (Fig. 2) at fixed

temperature displays a slope of a =
0.69 m 2/3, a value between the one given by mean field

approximation, namely 1/2, and the one given by scaling consideration [21] in a semi-dilute

regime (r- 0.84 in two dimensions). Such an intermediate value has also been seen in three

dimensions [25].
At constant concentration #

=
0.25, the log-log plot (Fig. 3) of the square end-to-end distance

vers~ts (L) has a slope of 2v m 1.36 which is less than the theoretical value of1.5 because the

system is semi-dilute. Both with Pott's model-like simulation [14] and BFM model [25], the

gyration radius follows a scaling law with (L) for large enough values of (L).
Generally, these finding agree with the prediction of Cates and co-workers [7].
It is also possible to plot the same picture, but changing now the mean length (L) with

concentration (Fig. 4) instead of temperature. The curve is qualitatively the same (Fig. 5) as
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the log-log plot of the mean end-to-end square distance with concentration. In fact, this shows

the power dependence of (L)
on #, as stated above.

The result is however very different for a monodisperse system of chains of equivalent chain

length (L): computer simulations have shown a decrease in the radius with increasing concen-

tration [29, 35,36]. This fact was already predicted by scaling laws [37]

R~
-J

N<-~/4 14)

in three dimensions. R~ represents either the square end-tc-end distance or the square gyration
radius. In our polydisperse case, we see an increase followed by a leveling of the chain radius

with increasing concentration, instead of a decrease,
over a large range of (L).
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Following reference [37], a similar calculation as the one giving equation (4) yields for a two

dimensional system of monodisperse chains:

R~
m

N#~~/~ 15)

I.e. the decrease of the chain radius with increasing concentration should be even stronger
than in three dimensions. At first sight, because there is an increase in the mean chain length
with concentration, we could expect that the curve (R~)

=
f(#) shows in fact short chains

behavior for low # values and long chains behavior for higher # values. It means that two chain

populations could coexist with different static properties like a different scaling dependence of

R with the contour length L. There are two possibilities for the existence of two populations:
ii) the shorter chains swell the greater one. For a system containing long enough chains, at a

given concentration, we should see a log-log plot of R~
=

f(L) displaying two slopes, 2ushort

for short chains and 21qang for long chains with ushori < ujang. This is the classical "Russian

dolls" pictures;
(it) due to the exponential distribution, the shorter chains, too short to obey a scaling behavior,
give a major contribution to the mean value (R~) and a log-log plot of R~

=
f(L) would display

"short > ~ong.
The snapshot (Fig. 6) does not show any evidence of a swelling of the greater chains by the

smaller one and the plot R~
=

f IL) (Fig. 7) shows that ushori > ujang, confirming the hypothesis
(it). The value of ujang goes as awaited from a value close to that of a dilute system iv

=
3/4)

to a value near that of a melt I.e. chains at the 9 point iv
=

4 /7) [38] with increasing #.
In reference [13], the value of u given by a plot R~

=
f(L)

was measured only for chain

contour length lower than (L). With decreasing value of (L), the author found an increasing
value of u, which is clearly due to measuring a "scaling exponent" where the scaling hypothesis

is no longer valid.

Going back to equation (5), valid for long enough chains obeying the scaling, and inserting
for N our measurement (L) c~ #°.69 we find

jj~2) j-0.06
"
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which is a very weakly decreasing function and is consistent with the apparent leveling of

the curve Figure 5. The confusion between a polydisperse system of living polymers and a

monodisperse system of chains of length (L) is only valid for systems with a sufficiently great
value of (L) I.e. systems for which the influence of small non-scaling chains become negligible.
It means that (L) should be several and not only a few time greater than the persistence length
in order for the wormlike description to be valid.
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Figure 5 is qualitatively the same as Figure 3 in [39]. Indeed, the authors used the geometrical
size of a living polymer to extract the contour length, taking as hypothesis that the micelles are

wormlike scaling object in the range studied. They draw the conclusion that at higher density
the dependence of IL) on # deviates from the expected behavior fi and tend to saturation.

It cannot be ruled out, however, that the finding of [39] is due to the same effect as observed

in the present work.

Apart from effects due to the presence of rings [15,17], no perceptible disagreement between

mean field prediction an simulations have been shown in the probability distribution of chain

lengths [18, 25]. It is also the case here. The distribution of chain length in monomer units

follows the exponential law theoretically expected for long enough chains (Fig. 8).
An interesting point is the jump between the monomer and the chains concentration in the

distribution. This is also seen in references [14, 25], which use different kind of algorithm.
The monomers seem to have a different probability to find a polymer end or another single

monomer in the neighborhood as other species.

Conclusion

The results ofthe present computer simulation demonstrate that the agreement between mean-

field predictions and numerical experiment depends strongly on whether the system behavior

is dominated by short (non-scaling) chains, or by chains long enough to display a polymer-like
behavior (scaling).

While in the case of changing temperature, the average mean end-to-end distance scales with

the average length, in agreement with theoretical predictions, in the case of changing density,
the scaling behavior ((R~) c~

#~°.°6) is only observed for long average mean chain length.
This could be a possible cause for misinterpretation of experimental data, in case when

measurement of (R~) are used for the determination of (L).
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