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PACS.61Al.+e Polymers, elastomers, and plastics
PACS.61.30.Cz Theory and models of liquid crystal structure

PACS.46.30.Lx Static buckling and instability

Abstract. We consider the elastic and orientational response of
a

uniform nematic elastomer

subjected to an
extension perpendicular to its director. By allowing a possibility of local shear

in the material,
we

show that the effect of "soft elasticity" leads to a new
regime of director re-

orientation, through
a

highly non-uniform stripe domain state (in contrast to earlier predictions
and observations of a discontinuous uniform director jump). The molecular theory developed
here gives predictions on two levels: of the general texture of the stripe state plus the interval

of strains in which it occurs, and of topological properties of the director rotation that
are very

general and depend only
on

chain anisotropy of elastomer but not on
details of the specific

material. On the other hand, parameters like the threshold strain for the domain formation

depend
on

the chemical composition and
on

the model used to describe its effect. We discuss

and explain experimental observations of stripe domains both in the perpendicular geometry
and when the stretching direction is at an oblique angle to the director, leading to asymmetric
stripes and different topology.

1. Introduction

Recently Finkelmann and co-workers [lj have discovered remarkable transitions of a mon-

odomain nematic elastomer under stress to a new, striped state. Our purpose is to explain this

transition, using a simple extension of the classical theory of conventional elastomers.

Nematic and high polymer properties are combined in polymer liquid crystals (PLCS). Meso-

genic elements (typically rod-like) are incorporated into chains with a residue of flexibility aris-

ing from linkages. Such chains can align, the nematic order extending or flattening the chain.

Neutron scattering [2j is a suitable tool to monitor the chain shape change. For elastic purposes
this is the only important aspect of the nematic order in anisotropic polymer networks. When

crosslinked, the chains retain sufficient extensibility that the resulting material is rubbery and

can sustain high extensions, and sufficient internal mobility that the average nematic director

can easily rotate.

In fact, the director is coupled to the elastic matrix [3j and their relative rotation is penalized
by an energy U

=
)Di (fl w)2, where

w is the local rotation of the network and fl that of the

director. One can view rotations as the antisymmetric part of the elastic deformation tensor A.
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This part, A~, is trivial in normal solids but of importance in liquid crystal elastomers, where

there is an independent internal degree of freedom, the director n.
Actually the director can

be induced to rotate by pure shears, the symmetric part of A, as well. There is a very rich,
non-linear nematic/mechanical (couple stress) elasticity for these new solids.

At a more microscopic level, rubber elasticity is the entropic resistance to imposed changes
of shape of chains forming the network. The entropy decreases with the number of available

conformations as the chain is extended, and the free energy rises. Since elastomers are driven by
their constituent chains' shape, it is not surprising that networks of liquid crystalline polymers

can suffer spontaneous shape changes on changing temperature, or respond mechanically when

the director is rotated. An illustration is the mechanical "anti-Fredericks" transition [4]. A

chain in an aligned nematic rubber will be, say, prolate. Its distribution can be represented by

a prolate spheroid, see Figure la.
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Fig. 1. Schematic chain conformation in a nematic elastomer under increasing perpendicular ex-

tension, leading to eventual re-orientation of the principal axis n.

Applying a strain I in the perpendicular direction distorts chains away from their natural

distribution and the free energy rises (Fig. lb). Eventually, in Figure lc the elongation is

sufficient to accommodate the chains without distortion, if the director rotates by ~/2 to be

along ~; an orientational transition then takes place. Ideally the energy in cases
(la) and (lc)

is the same, with that of (16) being higher. Since elastomers deform at constant volume, all

deformations are essentially shears and Figure I is an extreme example of coupling of n to

A~. Since high deformations are involved, this simple transition lies in the region of non-linear

molecular theory. It has been analyzed at length [4,5] and called anti-Fredericks since the

field (mechanical stress) is applied at surfaces, while the director is anchored in the bulk. The

director spatial distribution is uniform and the transition is discontinuous, all in contrast to the

Fredericks effect in simple nematics [6]. It has been seen by Mitchell et al. iii in an experiment
which we shall discuss later.

Mitchell et al. iii clamp the aligned sample in order to impose the transverse extension I,
presumably with the effect that the path between the uniform configurations (la) and (lc) is

not via states of simple shear, that is pure shear plus an element of rotation. The samples
in the experiment of Finkelmann et al. [I], although equally clamped, yield quite different

results. Stripe domains, apparent between crossed polars, are formed at a threshold extension

I. Polarized microscopy and X-rays reveal that the director rotates, oppositely in successive

stripes, and there is presumably simple shear in each domain, see Figure 2. Gross simple shear

has been suppressed due to the clamps on the sample, but it may occur locally, accompanied
director rotation within stripes.
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Fig. 2. The stripe domain texture, as
observed by Kundler and Finkelmann [1] (a). The character-

istic size of domains is
+~

15 ~Jm; the nematic director rotates in opposite directions in each successive

stripe. The scheme of experimental geometry (b), sample dimensions and the decay of local shear
near

the clamp. This scheme, and the whole theoretical construction, relies on
that the clamp region is

small and the major portion of the sample undergoes
a uniform uniaxial extension.

Actually, banded textures have been seen in the aftermath of shear applied to PLC melts.

It has been speculated [8,9j that the relaxation after shear flow involves compression along the

director and its accommodation in the form of stripe domains. It is conceivable that for the

temporary network of entangled chains in the melt, our model for nematic elastomer stripes

may also be applicable.

In elastomers it is apparent from the relative rotation penalty )D(fl w)~ that if simple
shear is permitted, then there is a low energy path between two main conformations (la) and

(lc) of Figure I involving rotation of the director. We shall propose that stripe domains are the

evidence of such a path being followed, the simple shear of the stripes providing a rotational

element to switch the director around at low cost. The final state is that of uniform simple
extension. This is essentially the interpretation of Kundler and Finkelmann [I].

In Section 2 we review the neo-classical picture for uniform nematic elastomers, including
totally soft modes where mechanical distortions are possible at no free energy cost. We also

discuss microscopic effects, in particular fluctuations of chain composition, which prevent the

system from achieving total softness. We call this phenomenon "semi-softness". In Section 3

we concentrate on the striped state, calculating the domain wall energy, the end elastic energy
in the region near clamps, the stripe width and the threshold strain. Then, in Section 4 we

describe the developed stripe domain system and also examine the asymmetric stripes that

arise when the principal extension is not exactly perpendicular to the original director. We

then conclude by discussing the outstanding problems.

2. Elasticity of Uniform Nematic Elastomers

An anisotropic Gaussian chain is characterized by its mean square dimensions in its principal
directions, (R()

=

)ijjL and (R[)
=

)iiL, where iii and ii are persistence lengths parallel
and perpendicular to the director and L is the contour length of the chain. The lengths tjj, ii,
fi are the eigenvalues of the persistence length tensor describing the spheroid characterizing
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the chain shape

tjj 0 0

I
=

0 ii 0
-

ii (6 + (r I)
n n]

,

(1)
0 0 ii

where r = ijj Iii is the ratio of principal chain step lengths. The diagonal form oft obtains if

n is along a coordinate axis.

The classical (Gaussian) elastic free energy density of conventional rubber generalizes to the

neo-classical form for nematic elastomer:

f
= ns kB T Tr I

o
A~i A

,

(2

where £o reflects the chain shape before the deformation A has been imposed, and I that of

chains in the deformed rubber. ns is the number of chain strands per unit volume. The initial

(before deformation) and current (after) directors no and
n

characterize principal directions

of to and £ as shown in equation (I).
The clamping in Figure 2 is essentially also that of Mitchell et al. iii. The principal extension

component of strain, lzz, is denoted by I. The other two principal strains are l~~ and l~~
=

I/(l~l), the latter expressing incompressibility. There are no off-diagonal terms since simple
shear in the (x z) plane has been suppressed. The free energies of two states, with n along

I (I.e. along the initial no and n along I, are:

f~
=

~nskBT l~ +1$~ +
~~

~~ -
~nskBT l~

+ ~) (3)
2

xx

2 1

~~ ~~~~~~ ~) ~~ ~
~

~~~ ~ l()12 ~ ~~~~~~
~~

~
~~

'
~~~

where the strain lo is shorthand for r~/~
=

@f. At fixed extension I we can find the

optimal transverse contraction l~~, which equals l~~/~ and r~~/~l~~/~, in the two cases re-

spectively. The final forms of f(I) have these values of l~~ inserted. Both expressions (3)-(4)

are those for a conventional elastomer [10] with natural lengths along the I axis of ~
=

l and

I
=

lo, respectively, see Figure 3a.

The free energies are equal at an extension I
=

it given by if
=

I( /(I + lo ), which is where

a discontinuous transition between the initial director orientation n = no (rotation angle 9
=

0)
and the final state with 9

=
~/2,

n along I, would ideally take place. The minima in Figure
3a correspond to the states (la) and (lc) in Figure 1.

2.I. SOFT DEFORMATJONS. In general we can allow the director n to be at an angle with

respect to the initial no (and thus the principal frame oft is rotated equally from to), and

allow a simple shear b in the relevant (x z) plane to develop in addition to extensions thus

yielding:
lzz

"
I b 0

A % 0 l~~ 0 (5)
0 0 1/(l~l)

Putting I and A into the main free energy density expression (2) gives

f
=

nskBT l~ +1)~ +
£

+ rb~ 2(r I)l~b sin 9 cos 9
2 ~l

-(r 1) l~ -1(~ + b~ sin~ 9 (6)
r
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Fig. 3. Elastic free energy of different configurations in the ideal soft material (a) and in the semi-

soft elastomer (b) (see text, Eq. (11) and below). Stripe domains exist in the regime B of transition

between the initial state (n
= no, 0

=
0) and the fully rotated state with 0

=
~/2. The soft (a),

or

semi-soft (b) trajectory of stripe domains fB is plotted in bold.

(Suppressing b and letting 9
=

0 or ~/2 one recovers basic Eqs. (3, 4) [4, 5].) From (6) it is

clear how intimately connected the shear b and the director rotation 9 are. The free energy is

evidently lowered by allowing the system to shear and to rotate its director axis accordingly.
Equation (6) is somewhat complicated, but minimizing this elastic energy density over b, 9

and l~~ one obtains

l~~
=

j
(hence l~~

=
I)

,

ii)

b~
=

lil~ I)ir l~)
,

18j
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~ r ~ l
(9)~~~ ~

~ fi 0~

with the elastic free energy, fmin
=

)nskBT. This constant value, equal to the energy of the

initial undistorted state ii
=

I, b
=

9
=

0), does not depend on deformation. It has been

called soft elasticity ill]. It can be checked straightforwardly, that putting

> =11/2 R~ i ji/2 jioj

into the original free energy (2) (with the matrix R~ describing an arbitrary rotation) yields a

constant f
=

)nskBT, I.e. this continuous set of non-trivial, volume-conserving strain tensors

A leads to no rise in the elastic free energy [12]. It is a large class of deformations, characterized

by the angles determining the rotation of tiff) and R(16). They do not require the application
of stress (see also [13]). Following a soft mode, the system can be taken directly from A to C

in Figure 3a at no energy cost, provided a suitable shear b is permitted. The ramifications of

soft elasticity in the continuum theory have been discussed at length by Olmsted [12].
Equations (7)-(9) represent a particular case of soft deformation for the elastic energy (6).

They show the boundaries of the sheared and rotated state: deformation begins at I > I and

ends at extension I
=

@
= (tjj Iii )~/~ when the rotation of the director is completed, 9

=
~/2.

One can already look forward to an explanation of stripe domains. As extensions I > I are

applied perpendicular to no, the transition to the 9
=

~/2 state can proceed via the sheared

state +b, +9 at little cost. To avoid a macroscopic shear (forbidden by the clamping) the rubber

divides into parallel stripes of opposite b (and 9). There is then an energy cost associated with

walls between such opposite domains and the elastic distortion at the end of stripes in order

that the clamp constraint is respected. We shall analyze these, and other effects leading to a

threshold strain ~th in the next section.

There are however serious problems with this scheme. Figure 3 and equations (7)-(9) show

that there is no threshold; stripes should develop immediately I > I. The energy cost of the

walls is no help the creation of a wall (to allow shear in domains on both sides) always lowers

the energy from the initial f~(9
=

0) toward the line A-C in Figure 3a. The elastic energy
contained in the clamp region does lead to a threshold, but it is very small (I

+~

1+10~~)

as we shall discuss in the next section. In experiment [I] the apparent threshold extension is

of the order I
+~

I-I and clearly another mechanism for a threshold must be sought. Many
candidates suggest themselves, for instance compositional fluctuations, or the effect of using

bulky rod-like crosslinks on the second stage of the material synthesis; both act to reduce the

apparent softness and thus introduce a threshold. We give one example here to make our

discussion concrete. Other mechanisms will have the same qualitative effect, that is to provide

a small resistance to all soft deformations in the free energy (6).

2.2. COMPOSITIONAL FLUCTUATIONS; SEMI-SOFT DEFORMATIONS. The polymer chains

of Mitchell et al. are in fact random copolymers (~). One type of monomer is intrinsically
mesogenic and develops an order parameter, the other is non-nematic and is used as a site

for potential crosslinking. Thtts the composition of strands between crosslinks randomly varies

about the mean composition, the fluctuations about this mean generating fluctuations in the

effective step lengths iii and ii, and thus also in the anisotropy r. Total softness becomes

impossible: a soft >-trajectory (10) for one polymer strand is not quite what is required for

(~) Finkelmann et al. assemble their networks in such
a way that any incompletion

or
defect in their

reactions will effectively yield structural fluctuations. These effects
are

possibly small in their systems
and

are
dominated by the rodlike character of their crosslinks.
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another strand with a slightly different to and I. This destruction of total soft elasticity by
compositional fluctuations has been calculated [14] and is evident from equation (6). Averag-

ing the free energy density (6) over different strands, (...),
we should replace the anisotropy

parameter r by (r)
= (ijj Iii) wherever it appears. The free energy density averaged over the

whole system takes the form

The first rm, fj~~, is
xactly

equation (6)
ith

mplemented bstitutions r - (r) and

I/r - I fir), that is conditionally
replacing

r with its average. In fact, (I/r)

is not actly

in ill ).
The first part fjrj is simple as before and l~~ and b appear in it exactly as

much of the previous analysis
applies.

with
espect

for
timal

ajectory
and

9:

~~~ ~
~

'
°

~
~~~~~°

where the threshold strain

~3
1 1/in

~~~j
1 i ji/rj

is the final significant strain in the problem and is a measure of the fluctuations ii-e- of how

(I /r) differs from I fir) ). This "semi-soft" solution starts at I
=

ii where the rotation angle 9

and local shear b grow continuously from zero and l~~ continues to diminish from lllG. At

the other end of this process, as the main extension I
-

~ivi, the director rotation saturates

at 9
=

~/2 and the shear b returns to zero. These solutions qualitatively resemble the ideally
soft situation, described by equations (7)-(9), with the exception that the threshold is now

raised above I
=

I and that the free energy density is not ~nskBT, but

f~
= )nskBT

l~ l ()
+
)j

(15)
1 1

Both soft and semi-soft cases are characterized by the transverse components of strain l~~
=

const and l~~
+~

I Ii, rather than both
+~

I/fi
as in any conventional hard regime (see also

Sect. 4.2, Eq. (35)).
Figure 3b shows the free energy of this semi-soft trajectory from the initial 9

=
0 state at

I
=

ii, to the final one with 9
=

~/2 at I
=

fill The free energy (15) is tangential to (3) at

I
=

11 (9
=

b
=

0), a fact we shall use in the next section. This free energy of the semi-soft

state is also tangential to the one of the final rotated state at I
=

11 /fl (9
=

~/2, b
=

0)

fc
= jnskBT

(
)l~ + (r)1$~ +

~~
~~ - jnskBT

i
)l~ + ~@j (16)

r
~~

r

~ ~ ~~ ~ l 2@j2~~ ~ if ~ (r)1( ~
l
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which is the fluctuation-amended form of (4), with l~~
=

(r) ~~Rl~~/~. The initial explanation
of stripe domains can now be given in terms of the semi-soft elastic response of nematic

elastomers. Compositional fluctuations have offered a mechanism for a threshold at finite

extension ii > I, but there are other mechanisms for the loss of soft elasticity, which will

provide a different prefactor in the last (sin~ 9)-term of ill ). Examples are combinations of

rigid rod-like crosslink and two-step crosslinking effects. These will, in a similar fashion, lead

to a
different small threshold strain ii, but will leave the qualitative features of the transition

unchanged. We, therefore, shall proceed to discuss stripe domains in some detail, in the general
terms set down by equations ill )-(15). We shall return to the questions of concrete models for

semi-softness and of thermal/mechanical/chemical histories of elastomers in a future paper.

3. The Elastic Instability

We shall first calculate the properties of stripes formed in response to strain imposed perpen-

dicularly to the initial director no- The interesting case of oblique extension will be briefly
examined in the next section, after the general principles have been established.

It is clear that if local shear deformation is allowed, there exist low energy routes between

the initial state of nematic elastomer with 9
=

0 and the configuration with 9
=

~/2. Since

the global shear deformation of the sample is prohibited by clamping, we propose that such

shear and intermediate rotation of n can exist in bands of alternating sign. Figure 2b shows

alternating domains of width d, the displacement associated with the shear b being indicated

in the clamp region. Macroscopically, these displacements are small, but still have to be

reconciled with the clamp constraint. We calculate the end energies thus incurred and the

energy of nematic and elastic deformations associated with the interface region between the

adjacent domains.

3.I. THE END ENERGY. The amplitude of displacement at the sample ends, with respect

to a clamp constraint, Figure 2b, is
+~

db. This displacement has to decay, thus imposing an

additional distortion (extension
or compression as required) in a band of elastomer near the

clamp. The size of such region, in which elastic strains and the director orientation decay from

the optimal semi-soft values of the bulk (12)-(13), is of the order d (stripe width) since the

distortion is periodic in the fl direction with period d. This can be understood, for instance,
from the compatibility condition for elastic strains. In the decay region the shear strain b

=

lz~(x,z) and, therefore, must comply with lzz. £b
=

)lzz. Clearly, the natural length
scale for the lzz (x) variation is the stripe periodicity d and so must be that of the shear decay.
Hence the end energy per stripe is

+~
)(~tb~)d~L3. Here ~t is the typical (shear) modulus of

elastomer and d~L3 is volume of the region. We shall denote the parameter ~t =
3nskBT since

this is the value of rubber modulus in the isotropic phase and it remains the characteristic

energy scale of this problem. There are L2 Id stripes across the sample, whence the total end

energy is

F~nd m (/lb~ )L2L3d (17)

(see Fig. 2b for the sample dimensions, L). This energy decreases as the domain size d gets
smaller because the more frequent sign reversal of elastic shear makes it easier to accommodate

in the clamp region.

3.2. THE DOMAIN WALL ENERGY. We now calculate the energy of an isolated wall sep-

arating domains with opposite sense of shear and rotation. Experimentally [I] stripes appear
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6
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x

la) 16)

Fig. 4. The director rotation angle (a) and the scheme of domain interface of the width
w.

The

optimal director angle +00 corresponds to the soft (Eq. (9))
or semi-soft (Eq. (13)) solutions.

to have a uniform angle 90, the wall between them being very narrow compared with the do-

main size d. We shall see post hoc from the calculation that the assumption about the narrow,

solitary wall is justified.
Traversing a wall the director angle 9(x) varies from 90 to -90 via 9

=
0, see Figure 4a. (We

shall exclude for the moment the topologically unrelated possibility of the rotation through
9

=
~/2,

or out-of-plane twist within the wall). In this event the energies of states with an

intermediate rotation angle -90 < 9 < 90 are required. This means that the system cannot

reach its local optimal trajectory, equations (12), (13), and the deformations (at fixed director

angle 9) are (~)

~~~
"

/j)ji/4 tin (lrj I)sin~ 9)~/~ §
=

(l~l l)sin9cos9

lrj jjrj I) sin~ 9
l~~)

The corresponding free energy, scaled by a factor ~nskBT, takes the form

~'~~~
'~

~~ ~ l/(r)
-~~

l)sin~ 9

~~~l ~
~~~~ ~ ~~~~

The wall structure is determined, as usual for interfaces, by the balance between two opposing
demands: to traverse the unfavourable region 9

+~
0 as quickly as possible so as to minimize

fj(9), and as slowly as possible to minimize the nematic Frank elastic energy by reducing
the gradient of 9(x). The optimal trajectory 9(x) across the domain wall is determined by

minimization of the total energy

F m LiL3 /~ ~nskBT fj(9) +
~K

~~)
j

dx
,

(20)
-m

2 2 dX

where LiL3 is the area of a wall. This is a classical problem and yields explicit expressions for

the interfacial width w and the wall energy per unit area, ~y. For small amplitude bands there

(~) This form of lxx and b(9) is
an approximation, neglecting the effect of induced shear Jyx due to

the compatibility constraint. Another estimate can be obtained by fixing lxx and then finding b (sin 9)
alone. The results for wall thickness and energy remain unchanged in this

case.
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are approximate forms

W >

I ~rl~~ 1 ~~~~~/~ (211

'~ ~
~ r~~~ ~ ~~~

~~~~ ~~~~

where s is the strain above the threshold, I
=

ii + s. As usual the energy is proportional

to the geometric mean
fi of the two competing energy scales and the characteristic width

(
=

(K/~t)~/~ sets the scale of w. ( is associated with the balance of Frank and rubber elasticity

in the domain interface and is a microscopic length (for K
mJ

10~~~ N, ~t mJ

10~ J/m~
we have

( mJ10~~ m).
The number of domain walls is L2 Id, thus the total energy contained in these walls is

LiL2L3
(23)Fwaii

~ 'f d

This energy decreases with increasing d because, obviously, one has fewer walls in the system.

3.3. THE DOMAIN SIzE. The resulting structure of stripes is determined by the balance

between the end and the wall energies obtained above. One needs to minimize the total energy
of distortions,

~~~~ ~~~~~~
~~~~ Ii '~~~

'
~~~~

which gives for the transverse dimension of stripes:

d=fi+~fi.
(25)

/lo

The stripe width depends on the geometric mean of ( and a macroscopic length, the sample
dimension along the axis of strain, Li The overall energy Fstripes of non uniformities in the

system is Fstripes
"

LiL2L3 2~y~tb(/Li
We have seen that the interface energy ~y +~

s~/~ and vanishes at the ideal threshold I
=

ii
of the semi-soft material. The same is true for the optimal magnitude of shear (see Eq. (12)),
bo

+~

s~/~ Therefore, the domain width must vanish at this threshold as well:

d
+~

6~/~/n iir~~~~
i~~

ii ~~~
~~M 126)

Clearly, if the transition into the stripe domain state were to take place exactly at I
=

ii, as

the semi-soft theory predicts, the domain size would be rapidly increasing from zero and we

must analyze the transition more accurately.

3.4. THE THRESHOLD AND NATURE OF THE TRANSITION. The energy cost of creating
stripes must be balanced against the reduction in energy density, A f

=
f(9

=
90) f(9

=
0),

achieved as the system shears to the semi-soft trajectory. As we noted in Section 2, these two

branches of energy are tangential to each other at I
=

~i, that is where 90
"

0, and hence this

difference f(9
=

90) f(9
=

0) must be quadratic in ~ ~i, see Figure 3b. In fact,

~2
A f

=
f(~; 9

=
90) f(~; 9

=
0)

= --/~m
,

(27)
2 ~i
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which is to be balanced against the rise (per unit volume)

f ~~~~~~~ @~~~~~ (~~)
~~~~~~~ LlL2L3 Ll

Clearly, at s < I the positive energy of stripes (28) is dominant over
(27). The energy gain

due to the uniform shear and rotation within each domain, expressed by A f, becomes sufficient

to overcome this barrier at the critical deviation

~th -
8
Ill ~~~

ii ~
IT) ((ri )1~~~ (29)

This increment over the "ideal" transition strain ii, due to the non-uniform distortions in the

system, turns out to be very small. For typical values (
+~

10~~
m, Li

+~

10~~ m, ii
+~

I and

the chain anisotropy r +~
2 [1], we obtain sth +~

10~~ Therefore the cost of deforming the ends

of stripes in order to conform to the clamp is not sufficient to shift the transition measurably
from the underlying threshold ii for semi-soft deformations.

We can now return to equation (26) and estimate the stripe width d at the transition.

Because the transition has been slightly delayed, d does not increase continuously from zero.

Taking the above estimate for sth we have dth
+~

/G
+~

10~~
m. As the imposed deformation

I is increased further beyond ii + sth there should be a further increase in d beyond dth, but

given the low power s~/~, this further change will be weak. It is not clear in any event how the

stripes can readily alter their width because of the topological problem of removing soliton-like

domain walls (see [15] for the analogous situation in stripe domains of a different nature). It

is likely that the stripe width remains largely constant as I is increased.

It is straightforward to estimate small discontinuous jumps of other parameters at eth, for

instance, the director rotation angle within stripes starts at the value

(~j ~
1/2

~~~
~'

~
~(T)

1

~~
~

~ ~ ~ ~~~~

In summary:
ii The transition takes place at I m ii, given by equation (14), with a singular evolution 9(1)
from 9

=
0;

it) Due to end effects the transition is slightly delayed and there is a small jump just beyond
iii

iii) The stripe width also does not grow from zero but appears at a finite value,
mJ

10~~
m,

and should change very little thereafter.

4. The State of Stripe Domains

4.I. ANGULAR DEPENDENCE. As has been discussed in the previous section, the stripe
domains are formed in order to comply with the mechanical clamping of the sample, which

prevents the net shear deformation and forces the material to break into stripes with shear b

of alternating sign. This argument does not require that the stripes are periodic, but only sets

a characteristic length scale d of their average width.

Within stripes the angle of uniform director rotation is given by equation (13), which can

be re-written explicitly:

9 +
in ~

iijj~/~° ~~~~~~ irj i p ~31j
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Fig. 5. Variation of the director rotation angle +9(J) within stripe domains (regime B between

the onset threshold Ji and the completion point at
@Ji). Note the singular points at both ends

of this regime.

and is plotted in Figure 5 for the values of the mean anisotropy (r)
=

2 and threshold strain

ii
~J

I.I (see [I]). This expression gives the optimal angle of the director, but we now know

that the rotation starts at a threshold (29) slightly higher than ii However, the initial jump
in 90, equation (30), at ii + sth is small and, since the dependence 9(1) is singular with

infinite slope at I
=

ii, it would be hard to distinguish the jump 9th on top of the underlying
"defect-free" behaviour.

Figure 5 also reveals that 9(1) is singular at the end of the semi-soft regime, I
-

fill, 9
-

~/2. We thus predict in Figure 5 that samples with different compositional
fluctuations and thus different ii should have their fill) curves collapse on each other if plot-

ted against I/li, Provided they have similar chain anisotropy (r) values.

There remains a question of whether (13) and (31) describe 90(1) correctly in the whole

range of deformations, until 90(1) reaches ~/2 at I
=

ii /£. If the domain wall remains

topologically unchanged, see Figures 4 and 6a, with the plane director bending from 90 to

-90 through 9
=

0, then equation (31) should be the correct dependence for 90(1). This

means, however, that the topologically stable wall defect will have to remain between each

stripe even in the final fully rotated state (lc) with 90
"

+~/2 and zero shear. The effective

wall thickness w is very small, as suggested by equation (21), but could perhaps still be visible

on the background of totally uniform director field, especially since in crossed polars all would

be dark except these "topological fossils". The experiments of Kundler and Finkelmann [I]
suggest that some remains of stripe texture can indeed be seen in the final state. The same

argument applies to the end zone near the clamp: the director distortion corresponding to the

topologically stable bend domain wall cannot easily disappear and the trace of the wall should

be seen on top of the uniform background in that region, see Figure 6a.

The alternative route between stripes, Figure fib, has a different topological nature and there

can be no continuous transformation between walls of the types 6a and fib. As we have asserted

above, the system that starts its rotation from the uniform state with 90
"

0 will develop bend

walls, Figure 6a, which then will remain in the system even after the transition to 90
"

~/2
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6~
6a

~~ ----

~mfi
@11@

~~~~

(a) (b)

Fig. 6. Topologically stable wall defects between stripes. The wall of type (a) will remain if the

director rotation starts from 90
=

0 (1.e. n =
no) and proceeds towards 90

=
~/2. Type (b) walls

would appear if the rotation
were

instead from the homogeneous state Ho #
~/2. This could be realized

by stretching in the isotropic state, then cooling and releasing the strain slowly.

within stripes has taken place. If, however, the stretched state of nematic elastomer with

9
=

~/2 is made completely uniform (for instance, by heating the system into the isotropic
state and then cooling back to nematic) the opposite scenario should take place on removing

the strain. On decreasing the imposed extension I the material will seek a route to reach its

equilibrium state with
n = no and 9

=
0. The semi-soft stripe domain texture is one such route

and, clearly, the domain walls of the type fib will be formed in this case
(their energy penalty

vanishes completely in the starting configuration with 9
=

~/2, just as we had it for bend

walls 6a, equation (22), at their point of formation). For the same topological reasons these

new domain walls will have to remain in the system, on the background of the uniform ground
state 9

=
0 conformation. This interesting speculation could easily be tested by observation.

4.2. STRESS-STRAIN BEHAVIOUR. The regime I
=

(I, Ill is elastically "hard" because the

branch f~(I) (see Fig. 3b) is followed. Between ii and fill semi-soft stripes develop and

for I >
fill the material becomes hard again, following fc(I). The relevant free energies

for these regimes are given by equations (3), (15) and finally (16). Therefore, we can calculate

the nominal stress ~~ =
df~/dl and also the gradient d~~/dl, a measure of the modulus at

finite extensions. One has for the nominal stresses and moduli in the initial hard, semi-soft

and rotated hard regimes:

where the fluctuation parameter (I/r) is determined by the average chain anisotropy (r) and

the (observable) threshold strain ii, equation (14).
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Fig. 7. (a) Nominal stress a against strain for hard (A and Cl and semi-soft (B) regimes, given by
equations (32)-(34). This stress-strain plot is qualitatively the

same as
that of'Kiipfer and Finkelmann

[16] and thus allows a detailed comparison with experiment. (b) The corresponding transverse strain

relaxation, lxx solid line and J~~ dashed line. In the semi-soft regime B J~~
=

const and lxx
~w

Ill,

as for true soft deformations, in contrast to hard regimes A and C where lxx and J~~
~w

1Il.

These results are schematically presented as a stress-strain curve in Figure 7. There are

three regimes, A, B and C on this plot:

.
The initial (I

=
I) slope ~~(l) is the modulus, ~t, which sets the scale in equations (32)-(34).

.
The important parameter provided by the experiment is the threshold strain ii " 1.08

[1]. Now we can predict the slope of ~~(l) in the stripe regime (33) which turns out to be

d~~ /dl m ~t/15. This is a much lower effective modulus: note that its difference from zero is

precisely the measure of "semi-softness" the deviation from the ideal neo-classical theory of

nematic elastomers. The deviation is expressed by the correction in equation (11) and shows

itself by the presence of a threshold strain 11
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.
The end of the stripe regime B corresponds to the strain fill, which gives an independent

measure of mean anisotropy (r)
m 2 [1]. With this data we calculate the slope ~c ii) and the

effective modulus in the rotated state C from equation (34), which is d~c/dl
=

0.44~t.
In this analysis we have ignored the contribution to the stress from the work required to

create the walls and ends since the shifts in energy they implied were so small (see the discussion

in the end of the previous section). Since Kfipfer and Finkelmann [16] measured ~(l) along
with the initial and final strains associated with the stripe interval iii and fill in our

analysis), direct comparison with experiment is possible (their material and the experimental

setup here is almost identical to that of ill ). Figure 5 of [16] shows almost identical qualitative
behaviour to the one sketched in Figure 7 here.

Another interesting aspect of deformations in stripe domain state is the transverse contrac-

tions l~~ and l~~ (the latter deformation expresses the reduction in the sample thickness L3,

see Fig. 2b). We have seen in the analysis above that in hard elastic regimes l~~
mJ

I/fi and

l~~
~w

I /fi, whereas in the soft or semi-soft regime deformations ~~~
~w

I Ii and l~~
=

const.

Thus soft and semi-soft responses are qualitatively identical and quite distinct from the hard

one, see Figure 7. There should be a crossover between these two qualitatively different regimes

as sharp as the singular behaviour of fill). The explicit results in the three regimes are:

~ ~~~ ~"
~

~' ~~~
~

'

~"
it

~~~~

~ ~
l 1

~
(r)~R

~~ (r)~R / ' " V~

Although l~~ may be difficult to measure for a thin strip, l~ should be straightforwardly
accessible and, at a given imposed extension I, l~~ is derivable by the volume conservation

condition.

4.3. EXPERIMENTS WITH STRAIN PERPENDICULAR To no Mitchell et al. [7] performed
experiments on monodomain nematic elastomers aligned and then crosslinked in a magnetic

field. Finkelmann et al. [1,16] used the two-step crosslinking method when the sample is

stretched after the first weak crosslinking reaction to reach a monodomain state, and then

crosslinked for the second time. Both groups performed wide angle X-ray scattering (WAXS)
to determine the nematic order parameter Q and the director orientation 9. Mitchell et al.

saw a substantial jump in fill) at a threshold and that the magnitude of the order parameter
collapsed at the transition and then recovered. This was at about 70 K below the nematic-

isotropic transition. Finkelmann et al., on the other hand, saw the WAXS pattern break

into two equivalent but counter-rotated parts (+90) with no measurable decline in the order

parameter seen in each part, even though these experiments were performed relatively close

to the N-I transition. Analysis by crossed polars then confirmed that the two sets of WAXS

peaks correspond to the separate +90 stripes. The other main difference between the two

experiments was that Finkelmann's polymers were of a much higher anisotropy: I<fipfer and

Finkelmann [16], studying the same material as in [I], measured the spontaneous distortion

to be L/Lo
~

l.4 leading to r = tjj Iii
~J

2.5. Mitchell's polymers iii,
an equivalent small

temperature below the N-I transition, had a L/Lo
~J

1.05, giving r mJ
1.16 (unfortunately the

data corresponding to the temperature of their mechanical experiment were not given).
In the analysis of this paper we have assumed that the nematic order is rigid, that is its

magnitude Q is unchanged by strains and only its direction responds by rotation. This is
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discussed at length in [5] and is justified by comparing elastic and nematic effects in elastomers.

Since the elastic energies are of the scale kBT per chain strand and the nematic energy is per

monomer, it is a reasonable assumption, confirmed by Finkelmann's observation of constant

values of Q. It is accordingly rather surprising to find in the other case
iii, where the nematic

order should be even more rigid, that a mechanical transition causes it to collapse. Perhaps
the lower intrinsic chain anisotropy is responsible for this effect?

In earlier work [4, 5] Mitchell's results were explained by invoking only uniform states with

a transition between states 9
=

0 and 9
=

~/2 at either it or at the point of the total stability
loss I

=

(fjj/ti)~/~ in Figure 3a. The present paper, by looking at a more complicated
non-uniform state including shear deformations, has showed that there is another, low-energy

trajectory for this transition via a stripe domain state. This invites the question, why was

there not a transition to a striped state, which should mediate the transition between the

initial and the final states (la) and (lc)? It is difficult to answer this question without more

data on the intermediate states, for instance WAXS at extension just above the threshold, and

measurement of spontaneous chain anisotropy at the experiment temperature.
Finkelmann's data are qualitatively explained by the model we have presented, but the ques-

tion of detailed modeling the semi-soft threshold strain ii, equation (14), remains. Here it has

been essentially treated as a phenomenological parameter, simply describing the deviation of a

real monodomain nematic elastomer from an ideal soft elasticity regime (see Eq. (ll)). Several

molecular mechanisms for this departure are possible and, probably, all contribute their part

to the prefactor of the addition
mJ

sin~ 9 to the neo-classical free energy (2). Throughout this

paper we have implicitly adopted just one such model, namely the concgpt of chain composi-
tional fluctuations [14], leading to the difference between average values (I /r) I /(r). A simple
perturbative analysis [14], within the freely-jointed rod model, yields a rather small value of

ii Persistent chains give much higher value for the effect of compositional fluctuations, and

we shall return to explicit calculation of this threshold in a future work. There is also the

question of the dependence of this threshold strain on the crosslinking density, ii Ins ). Com-

positional fluctuations certainly depend on ns, as does the effect of bulky rod-like crosslinks,
for example. Before adopting a definite view on which molecular mechanism dominates the

weak, semi-soft elasticity ill) it is necessary to have more data from the experiment. For

instance, Finkelmann et al. ill, reporting about their sample preparation procedure, indicate

that several experimental conditions were varying with ns, which may cloud the interpretation
of the threshold dependence.

4.4. TRANSITION UNDER OBLIQUE STRAIN. We briefly consider the situation when the

extension is imposed at an oblique angle to the initial director no The free energy density

now contains a pre-tilt of the director, 9
= a. However, the concept of near-soft deformations

as a low energy route for director re-orientation remains valid. For simplicity, we present the

result for the ideal "soft" case, which bears no qualitative difference to the real system except
that the threshold is offset by ii The direct minimization gives the optimal director rotation

angle

~~~~ ~°
" ijr i)

l~l'~ ~~ + l~ ~~ ~~~~ °l l~~~

and the two modes of shear deformation within each domain are

l~ jr I) sin a cos a + /r(12 1) + jr I) sin~ a/r
12 jr I) sin~

o

~~
l[r jr I) sin~ al ~~~~

The "positive" domain, b+, in which the existing director pre-tilt a is in the same direction,

can start its shear deformation continuously. However, in order to form "negative" stripes with
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the shear of opposite sense, it is necessary to overcome a barrier stripes with -90 must jump

to that state from the initial orientation. This discontinuous jump in b- at the transitions

takes the form:

~~
~

21r 1) Sin 2a
j~~~

r + I + (r I) cos 2a

In order to comply with the clamp constraint the domains with such a different magnitude of

shear must now have different width, given by the relation

d+b+
=

d-b- (39)

Therefore, one should expect the different intensity of scattering from the two sets of domains,
determined by their different volume, the ratio of these intensities given by I-/I+

=
d- /d+.

5. Conclusions

To summarize, we have described a new non-uniform regime of deformation and re-orientation

of monodomain nematic elastomers in an interval of extensions determined by the mean chain

anisotropy in the material. This transitional regime is remarkable in that in spite of the system
being mechanically constrained, it is able to find a trajectory that is essentially soft. It is the

first unambiguous experimental evidence for soft deformations. The texture of this non-uniform

deformation is determined by mechanical constraints on the sample (to avoid a macroscopic
shear) and has a form of irregular stripe domains of a mean characteristic size d, given by
equation (26). Realistic elastomers would have various molecular reasons to be what we call

semi-soft, with small deviations from the neo-classical nematic rubber elasticity. In each case

the transition would start at a small threshold strain.

The results of this paper form two distinctive groups. The first group gives a set of universal

predictions about the transition:

(I) The "window" of extensions, in which the transition is taking place and stripe domains

form, is between a small threshold strain ii and the complete re-orientation at fill, with

(r) the mean chain anisotropy.
(2) The director rotation angle 9(1) has a characteristic dependence with singularities at the

threshold and at the end-point of the stripe regime, equation (31) and Figure 5. There is an

associated local shear deformation of opposite sense in each domain.

(3) Due to the defect walls between the domains the real transition is further offset by a very

small increment sth, equation (29). However, due to the singular behaviour of d(I) and 9(1)

near this point, the domains form with a finite spacing d
mJ

10~~ m, which then changes very

little with deformation, d
mJ

s~R

(4) There are three elastic regimes, a hard one before the threshold ii, when no rotation

of the director takes place and the rubber responds to deformation with a normal transverse

modulus ~t; a semi-soft deformation of stripe domains, when the director rotates in two opposite
directions the apparent modulus is at least an order of magnitude lower; a fully rotated hard

regime, when the director is aligned along the stress axis and the effective elastic modulus

is only slightly lower than in the initial regime. The corresponding stress-strain relation is

sketched in Figure 7.

The other group of results is related to the value of the transition threshold ii This

parameter is totally determined by fine details of the material preparation and should be very
different in different systems. It is the measure of deviation of a specific sample from neo-

classical nematic rubber elasticity, equation (2). There are several molecular mechanisms for

such a deviation, which we have discussed in the text and which will be a subject of another
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publication. Here we considered one of such mechanisms, based on the effect of compositional
fluctuations making different chains in the system to have different values of anisotropy r =

tjj Iii- Within this model the threshold strain ii is given by equation (14), in which the

average (I/r) can be regarded as a phenomenological parameter, slightly different from I fir).
Intimately related to the fluctuation parameter ii is the apparent modulus in the stripe regime

B, equation (33), which is only different from zero in a semi-soft system.
We believe that this analysis, combined with the experimental findings, gives a new insight to

the physics of liquid crystalline elastomers, allowing a better understanding of these remarkable

materials.
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