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PACS.61.30.-v Liquid crystals
PACS.62.20.-x Mechanical properties of solids

Abstract. The theory of simple domain walls in planar nematic films is reconsidered taking
into account azimuthal director rotations additionally. A perturbation treatment is useful to

derive analytical equations which are asymptotically valid in the limit of small distortion am-

plitudes. In comparison to previously known approaches
a more complete description leads to

a correction in the formula for the wall thickness. This correction also influences the shape of

closed domains and
causes an array of walls in materials with high elastic anisotropy.

1. Introduction

A sufficient strong magnetic or electric field applied across a planar nematic film can induce

distortions which grow continuously above a certain threshold [I]. Since this transition cor-

responds to a
pitchfork bifurcation, two equally stable configurations differing only in the

sense of the director rotation are possible. In well aligned samples there were found do-

main walls separating regions with clockwise and anticlockwise director rotation towards the

applied magnetic or electric field (2]. Two examples of simple walls are shown in Figure I

differing in the angle ~c between the normal to the wall and the director orientation at the

film surfaces. According to Brochard (3], the director configuration in a wall is described by
fl(X,Y)

=
bocos(X7r/d)tanh(Y/(o), where the angle fl is enclosed by the director and the

plane X
=

constant, bo is the maximal rotation angle, d the film thickness and to defines the

thickness of a domain wall. In the mid-plane of the film X
=

0 (-d/2 < X < +d/2) the

director rotates from -bo (for Y
~

-co) to +bo (Y
~

+co). In accordance with experimental
observation, the elastic continuum theory predicts that the width to of walls diverges when the

strength of the applied field approaches the Freedericksz-threshold (1-3].
It was found experimentally that closed domains have an elliptic shape [1, 2]. The ellipticity

remains constant even if the domain is not stable but shrinks gradually. The original theory (3]
postulates the simple relation a/c

=
K33/K22, where a and c are the principal axes of the

ellipse, while the elastic constants K22 and K33 for twist and bend distortions are defined

in the framework of the elastic continuum theory (I]. This relation is derived neglecting a

possible azimuthal director rotation inside the wall region. Actually, it was recently observed

that besides the polar angle also the azimuthal angle is altered inside a domain wall (4]. This
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Fig. I. Two borderline cases for simple domain walls. For
a

twist-bend wall the y-axis is perpendic-
ular to the director at the substrates (~ e #(X

=
+d/2)

= gr
/2), whereas in the case of the splay-bend

wall shown below both directions
are

parallel (~
=

0). With the exception of the splay-bend wall,
an

azimuthal director rotation always
occurs.

means that the ellipticity of the loops could be enlarged considerably as predicted by a rough
estimation (5].

In this paper we reconsider the theoretical model for simple domain walls in planar nematic

films taking into account all degrees of freedom of the director rotation. It turns out that there

is generally an azimuthal director rotation inside a wall. This additional degree of freedom

provides a correction to Brochard's model. For a high elastic anisotropy the correction becomes

important for the appearance of a periodic array of walls in accordance with the theory of

Lonberg and Meyer (6]. As long as the period is large compared to the film thickness and if

the distortion amplitudes are sufficiently small an analytical mathematical model is applicable
for simple and periodic domain walls.

2. Free Energy and Torque Balance

It is assumed that an a-c- voltage is applied at the bounding plates of the slab. The frequency of

the alternating voltage should be sufficiently high for avoiding flexoelectric and hydrodynamic
effects. Performing some minor modifications, the results obtained below for the electric field

are also applicable to the case of a magnetic field. In the continuum theory of nematic liquid
crystals, the director, denoted by a unit vector n, defines the local optical axis of the uniaxial

phase. The density of the free energy due to elastic distortions is represented as (I]

fn
=

Kii(div n)~ + K22 In
* rot n)~ + K33 In X rot n)~ (l)

2 2 2

where the coefficients Kii, K22 and K33 are the elastic constants related to splay, twist and

bend deformations, respectively. If an electric field is applied, the corresponding free energy
contribution is

fe
"

~j ~j £qEiEj (2)

For the uniaxial nematic phase the dielectric tensor is defined by

e~ = e ib~ + Aeninj
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where ni are the director components in a Cartesian coordinate system, b~ is the unit matrix

and he
= ejj El defines the dielectric anisotropy, which is assumed to be positive in this

paper. The dielectric constants ejj and El are related to the field directions parallel and

perpendicular to the director, respectively. Then the free energy is obtained by an integration

over the volume

F
=

dV f (3)

where f
=

fn + fe is explicitly written down in the Appendix. The director orientation for an

equilibrium state is deduced from the condition that the free energy (3) is a minimum. For a

stability analysis, however, the application of the torque balance equation

nx

ll~+$)
=0 (4)

t "

is often more useful. The coefficient I denotes the rotational viscosity and t is the time. Equa-
tion (4) allows to describe director reorientations but neglects material flows. It is convenient

to introduce dimensionless space coordinates by ~ =
7rX/d and y =

7rY/d proposing that the

film is confined between the planes ~ =
-7r/2 and

~ =
7r/2. The director attached to the

bounding plate and the axis y, which is parallel to the domain wall normal (Fig. I), enclose

the angle ~c =
#(~

=
+ir/2). Expressing the director components in terms off and # we obtain

n~ =
sin fl, ny = cos fl cos # and nz = cos fl sin # (5

Then equation (4) is replaced by

~ ~
/~

')
Iv

')
~~~

~°~~ ~ ~~
~

~~ Iv /~y ~~~

where the indices x, y and
T

symbolize the partial derivatives (fl~ =

~~,
fl~ =

~~, fl~
=b~ by

~~, etc.) and
T =

7r~Kiit/d~l is the time in dimensionless units The electric field is not
~T
homogeneous if distortions occur. Introducing a potential V for the electric field by

E~
=

j )
and E~

=

j )
(8)

~

(U, effective value of the applied voltage) we arrive at the equation

assuming that the electric potential responds immediately when the director is slowly reorient-

ing. At the substrates the director and the electric potential V satisfy the boundary conditions

fl(I
=

-7r/2)
=

o, fl(~
=

7r/2)
=

o, #(~
=

-7r/2)
= ~, j(~

=
7r/2)

= ~, (io)

Viz
=

-7r/2)
=

-)
and Viz

=
ir/2)

=

)
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3. Solution for Simple Domain Walls

Since the distortion amplitude is small in the vicinity of the Freedericksz-threshold, a pertur-
bation method is suitable to solve the set of nonlinear equations (6, 7, 9). Let us start with

the perturbation expansions

~
=

g~(i) ~ ~2~(2) ~ ~3~(3j ~

j
=

j(o) ~ ~j(1) ~ ~2 j(2) ~ ~3 j(3) ~

v
=

v(°J + gv(i)
~

~2v(2j
~ ~3v(3) ~

~ =
~(oj ~ ~

~(i) ~ ~2 ~(2j ~ j~~j

where e is a small parameter indicating the order of magnitude and the bifurcation parameter

~ is defined in the Appendix. Furthermore, the time variable
T

and the coordinate y can

be expanded, because there is generally a critical slowing down for director motions and the

thickness of the domain walls diverges if the Freedericksz-threshold is approached. In the spirit
of the multiple scale method, which is well established in the theory of non-linear oscillators (7],

we introduce slowly varying time variables Ti " ET, T2 "
e~T, and space variables vi " ey,

y2 "
e~y, and the derivatives are replaced by

b/by
=

eb/byi + e~b/by2 + and b/bT
=

eb/bTi + e~b/bT2 + (12)

The series ill) and (12) are inserted in the equations (6, 7, 9) and the resulting expressions are

expanded with respect to the small parameter e. Collecting all terms with the same order of

magnitude e" leads to a hierarchy of linear differential equations which can be solved stepwise.
To lowest order of magnitude we obtain

e° #($~ =
0 and Vjj~

=
0

The solutions of these equations satisfying the boundary conditions (10) are

#(°J
= ~ and V(°~

= x (13)

Obviously, higher order terms satisfy the boundary conditions

#("1(~
=

+ir/2)
=

0, V("~(x
=

+ir/2)
=

0 and fl("~(x
=

+ir/2)
=

0 (14)

for n =
1, 2, 3, Collecting all terms which are proportional to e~ leads to

In further calculations the notation

is used. The equations for #(° and V(~) with the boundary conditions (14) have only the

trivial solution
#(°

=
0 and V(~)

=
0 (15)

The equation for fl(°, however, possesses nontrivial solutions with the eigenvalues ~(°)
=

m~,
where m is a natural number. Only the smallest eigenvalue ~(°)

=
l is of physical significance
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and the corresponding voltage U
=

UF turns out to be the Freedericksz threshold. Thus fl(~)

is expressed as

~~~~
#

b~~~(Tl,T2;. (ill,1l2;. )COSX

where the deformation amplitude b(~) depends on the slowly varying time variables Ti and

space variables vi. Collecting all terms proportional to e~ in the equations (6, 7, 9) we obtain

g2 ~[j ~ ~(2)
~

~(i)~(i) ~ ~jj) j~~j

#[$1 =

~~
sin ~c sin ~b((~

~~~ Vjj~
= -b((~~i cos ~c cos ~ + 2(b(~J)~~i sin ~ cos ~.

The equations for # and V are solved by a straightforward integration. Considering the bound-

ary conditions (14) the result is

~(2> =

Fj~jb(ij ~j~~ ~j~~
~

ii k2)
~~~ ~

~j~~
2~j~i k2 ir

and

V( ~)
= b((~ ~i cos ~c cos ~ b( ~ ~

~i sin ~ cos ~
2

For functions fl and #, which belong to a suitably defined function space and satisfy the bound-

ary conditions (14), the linear operator L defined by Lfl e fl~~ + fl is self-adjoint when the
~/2

scalar product (fl, RI =

/
d~fl(~)#(~) is used. Because of (Lfl,#)

=
if, Lfl) and since the

-~/2

homogeneous equation L#
=

0 has the nontrivial solution
= cos~, the corresponding non-

homogeneous equation Lfl
=

h is solveable only in those cases where the condition (h, cos ~)
=

0

is satisfied (Fredholm's alternative). Applying this solvability condition to equation (16) yields

/+~/2 (-~l~~~fl~~~ + fl((~) COS~d~
"

0

-~/2

and performing the integration we obtain -~(~lb(~) + bi)~
=

0. For ~(~) # 0 the amplitude b(~)

grows without limits or tends to zero. Accordingly, for describing static domain walls, only
the possibility ~(~l

=
0 and b(~

=
0 has to be considered. Thus we conclude that b(~) does not

depend on the variable Ti

Finally, let us collect all terms of equation (6) which are proportional to e~. Taking into account

the results for #(~l and V(21
we get

~3 ~(3j ~ ~(3j
~

~p(3)

where

G(~~
=

(b()I + b(~ cos ~ ~(~~b~° cos ~ + 3 cos ~c(k3 + ~i I) sin ~ cos ~b~~~b((~

(k2 sin~
~c + (k3 + ~i) cos~

~c) cos ~ (l k2 sin ~c

~~~~~ b((
d~ ~ ~

~i
cos~

~
+

~i)
cos~

~ + (k3 1)(cos~ sin~
~

cos~
)j

(b~~l)~
3
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The integrability condition
+~/2

e~ G(~)
cos ~d~

=
0~~/2

leads to an equation which can be written as

g3 j~(1) ~ ~(2)) ~2 ~(2)~~(i) ~~3~(1) ~ ~j~~(1))3
~

~ j~~)

where

Now we define an
amplitude

b and insert
the definitions for the slowly arying time

variables

Tn =
e"T

and space = into
account that b(~)

depend

ii

b(T, ~/) # £(b~~~ (£~T, .. ( £~/, .. ) + £b~~~ (ET, ~T, .. (

Omitting
higher

rder terms to

e2~(2)
ji, ~

b~)

u2 u2
with ji

= ~~
~ The director angles and the electric potential are expressed as

~

~(T, X, ~/) #
b(T, ~/) COB ~ + °(£~

#(T, x, y)
= ~c + F(~)b~ + O(e~) (20)

and
V(T, ~, y = ~ +f cos ~ cos Jtb~ + 2+f sin ~ cos

~b~ + O(e~ ).

where b(T,y) is the solution of the amplitude equation (19).

4. Discussion

For ji > 0 equation (19) has some nontrivial static solutions for the distortion amplitude being
valid just above the Freedericksz threshold UF There are two homogeneous states b

=

+/@
and the third solution

biv)
=

/ltanhiv/o 121)

with (
=

@@ describes both states separated by a domain wall. The thickness ( of the

wall depends on the angle ~c between the wall normal and the orientation of the director at

the film substrates. In comparison to previously obtained results the relations (20) reveal that

the azimuthal director angle # is influenced by the presence of a wall. This angle is only
constant for k2

"
1 and for the case of a splay-bend wall (~c =

0). Usually, the assumption
k2

"
0.5 provides a good estimation for the elastic anisotropy of many substances consisting

of simple rod-like molecules. Polymeric material, however, could have a considerably larger
elastic anisotropy. Then remarkable differences to the predictions of the simplified model (3]
with #(x,y)

=
const. are expected to occur. After switching the electric field on, domains

with clockwise and antidockwise director rotation appear at least in well oriented samples.
Elliptic loops surrounding domains with unique director alignment possess a fixed ellipticity
which depends on the elastic anisotropy. Following the calculation presented in (3], the wall
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ellipticity a/c is expressed as the ratio 11 /(2 of the wall thicknesses 11 "
~/26(~c

=
ir/2)/ji

(twist-bend wall) and (2
"

2b(~c
=

0)/ji (splay-bend wall). Thus we obtain the formula

which replaces the result a/c
=

fij (2,3] obtained for a magnetic field (~i < I) and

with the simplification #(x,y)
=

const. Equation (22) offers a proper method to determine

experimentally the ratio k2/k3 of the elastic constants.

Consistency of the theory for simple domain walls requires that b(~c) > 0 for all possible angles

~c ensuring that the expression (
=

2b(~c) /ji for the domain wall thickness yields a real value.

Obviously, b(~c =
ir/2) is negative if k2 < 0.303. Then the equation (19) for simple domain

walls is not longer applicable and must be replaced by the extended equation

b~ jib b(~c =
ir/2)b~~ + Ab~~~~ + Bb~

=
0 (23)

which can be derived by a slight alteration of the ansatz (11). The additional coefficient A > 0

is found to be (8]

~
~~1r2~~~~ ~ ~2 -~

~
~~k(~~~

'
~~~~

while the other coefficients b(~c =
ir/2)

=
6m, ji and B in equation (23) are defined in the same

way as for equation (19). If 6m < 0 (k2 < 0.303) equation (23) describes a periodic array of

walls for a certain region of the bifurcation parameter ji. In the case 6m > 0 (k2 > 0.303)
the solutions of equations (21) and (23), which correspond to stable states, are b~

=
0 for

ji < 0 and b~~
=

+fi for ji > 0. The transition between the states I and II is the ordinary
Freedericksz transition.

In the other case, if 6m < 0 (k2 < 0.303), a periodic distorted state (III) described by b~~~(y) =

~~~( ~~
sin qy and the wavenumber q =

-bm/(2A) is stable in a region iii < ji < ji2,
~

where the lower limit is defined by iii
"

-b$ /(4A). It should be noted, however, that equation
(23) and its solution (III)

are valid only in the vicinity of the Lifshitz-point defined by ji
=

0

and hm
=

0, because in this region the period of the distortions is large compared to the film

thickness. The determination of the upper limit ji2 requires a more sophisticated calculation,

as the transition between state (III) and state III) is discontinuous (9]. Equation (23) is related

to the Ljapunov-functional

L(b(y)]
=

/
dy(Ab(~ + 6mb( jib~ + Bb~) (25)

2

which always decreases (dL/dT < 0) until any dynamics ceases. For such a system Maxwell's

rule (10)

Llb~~l = Llb~~~lv)1 126)

holds when an equilibrium between the stable film states b~~ and b~~~(y) occurs. Otherwise, if

L(b~~] ~ L(b~~~(y)], the absolutely stable state could grow at the cost of the metastable one by
domain wall motion.

Inserting the expressions for b~~ and b~~~(y) in the functional (25) and solving equation (26)
yields

§2
~~ 4i ~~ ~ ~~

~~~~



l182 JOURNAL DE PHYSIQUE II N°8

Outside the region iii < ji < ji2 the non-distorted state b~ =
0 is stable for ji < iii, whereas

the Freedericksz-distorted state b~~ minimizes the Ljapunov-functional for ji > ji~.
In conclusion, we have extended the mathematical model for simple domain walls by taking
into account additionally azimuthal director rotations. The correction to the equation for

the distortion amplitude becomes more pronounced with increasing elastic anisotropy. In

accordance with the theory of Lonberg and Meyer (6] the model predicts the occurrence of a

periodic array of walls if the elastic anisotropy is sufficiently high.
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Appendix

Free energy density for a nematic film subjected to an electric field

y~2 j~
~f

=

/ ( cos~ flfl~ + sin~ fl cos~ #fl~ + cos~ fl sin~ ##~ 2 sin fl cos fl cos #fl~ fl~2d ~ ~

2 cos~ fl sin #fl~ #~ + 2 sin fl cos fl sin # cos #fl~ #~

+k2 (cos~ fl#) + sin~ #fl( + sin~ fl cos~ fl cos~ ##( + 2 cos~ fl sin #fl~#~

-2 sin fl cos~ fl cos qi#~ #~ 2 sin fl cos fl sin qi cos qifl~qi~]

+k3 (sin~ fill( + cos~ fl cos~ #fl( + sin~ fl cos~ fl#( + cos~ fl cos~ qi#(

+2 sin fl cos fl cos qifl~ fl~ + 2 sin fl cos~ fl cos qiqi~ qi~

~ ill + ~i
sin~ fl VI + 2~i sin fl cos fl cos #V~ V~ + I + ~i

cos~ fl cos~ #) VI )
'f

where the notation ~ =
U~/Uj, Uj

=
ir~Kii/Ae,

~i =
Aelei, k2

"
A'22/Kii and k3

=

K33/Kii is used IV, potential of the electric field; U, applied voltage; d, film thickness).
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