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Abstract. Smectic-A free surfaces are discussed in the spirit of capillarity. It is shown that

for most practical
cases

the bulk cannot be treated as a semi infinite nledium: the natural length

over which
a

perturbation relaxes along a
free surface is just that creating bulk distortions that

propagate over the smectic thickness. Hence, the bulk distortions do not simply renormalize the

surface tension as in a
semi-infinite medium. The relaxation of the layers' distortion within the

bulk is fairly linear in nlost cases: this allows to develop a
functional analysis involving only

the free surfaces, instead of all the layers. In drops with thickness h, the surface is found to

relax exponentially with two capillary lengths
~J

(~h)~/~, where ~~
=

RIB is the ratio of the

curvature over the dilation elastic constant. This allows to match boundary conditions both

on the height and the tangent of the surface extremities. Films have two independent triodes:

I) an "average" mode describing the film medium layer. It involves
a pure curvature-capillary

length
~1 =

(Kh/r)~/~, where r is the smectic surface tension, and it)
a "differential" mode of

behavior similar to the drop
one.

The effects of added surfactants and applied external fields

are discussed together with the possibility of free surface instabilities.

1. Introduction

Smectic-A liquid crystals are semicrystalline materials iii. They consist in the regular piling of

flexible liquid monolayers, made of rodlike molecules oriented perpendicularly to the layers. At

free surfaces, smectic layers always orient parallel to the smectic lair boundary. The free surface

of a smectic-A can thus be viewed as a liquid surface with underlying crystalline properties.
Smectics-A in the free drop geometry [2-6] and the free standing film geometry [7-10] have

been widely studied, however never in the spirit of capillarity: there is no real understanding of

elementary problems similar to that of simple liquids. For instance, over which characteristic

length would heal a lateral surface perturbation caused by a floating object? Does the healing
length depends on the thickness of the smectic? Do films and drops behave in the same way,
etc?

It has long ago been shown that in a semi-infinite smectic-A sample, the elastic distortions

induced by a free surface perturbation simply renormalize the surface tension iii. More recently,
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it has been argued that the free surfaces of thick confocal smectic films, I.e., thick films with

perfectly equidistant layers, should display a curvature-capillarity [11]. The healing length
results then from a competition between the surface tension and the bulk curvature elasticity.
The purpose of the present work is to classify the different situations and to discuss from a

general point of view the capillary properties of smectic drops and films.

2. Smectic-A Elasticity

Smectics layers always orient parallel to free surfaces. Thus, any perturbation of the free surface

induces a distortion that propagates inside the bulk: in smectics, capillarity and elasticity are

coupled. Let us first recall the basic formulation of smectic-A elasticity.
We consider the linear elastic theory and we restrict our attention to problems invariant by

translation in one direction, say the y-axis. Elastic distortions in smectic-A's can be described

by the displacement function U(~, z) of the actual layers with respect to the planar equidistant
layers of an undistorted reference state iii. In the limit of distortions with a scale much larger
than the layer thickness, the elastic free energy density writes as

The first term is the elastic energy due to the curvature of the layers and the second one is that

due to their thickness variations. The elastic constants K and B define a characteristic length
~

=

@1. It compares with the layers thickness for well condensed smectics, but diverges

near second-order smectic-A to nematic transitions. The Euler-Lagrange equation associated

to equation ii) is

~2
~~ ~

~

~~ ~
j~

b~~ bz2

This equation describes the bulk equilibrium of the smectic layers; it is the fundamental equa-

tion of smectic-A elasticity. It should be noted that dealing with a pure mean field elastic

theory, we disregard any energy term arising from fluctuations (such
as Casimir-like forces).

3. Smectic-A Slab with Free Boundaries

In order to discuss simultaneously smectic drops and films, we consider a set of smectic layers
of thickness

~J

h (Fig. 1). The first and last layers are supposed to coincide either with a free

surface or a flat substrate. The slab layers are described by the function U(~, z), as previously
defined, with ~ indefinite and z E [-h, 0]. The equations of the boundary layers are respectively

u(~)
=

U(~,0)
=

£uqe~~~ (3a)

q

v(~)
=

U(~, -h)
=

£vqe~~~, (3b)

q

in which we have performed a Fourier decomposition.
Given the boundary layers, the shape of all layers within the slab can be determined in the

following way. For each mode q, equation (2) has two solutions of the type exp(iq~ + ~q~z).
The complete solution of (2), subject to the boundary conditions (3) is therefore
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Fig. 1. Smectic-A slab of macroscopic thickness h limited by two free surfaces with fixed shapes.
The layers within the slab evolve according to the smectic-A elasticity (cf. Eq. (4)). The distortions

with typical wavelength d z (~h)~/~ transform linearly front one free surface to the other. Conversely,

the short scale distortions with d < (~h)~/~ relax before reaching the opposite free surface.

which defines the whole slab texture. The total free energy of the slab is given by the integral

The second term in (5) describes the energy excess of the two free surfaces, assumed identical

for the sake of simplicity. Indeed, the excess length ds dx of the upper free surface is

~J

(1/2)u'~(x)d~, the free surface tilt being
~J

u'(~). Using the decomposition in modes (4),
the integrals defining F can be easily performed. One obtains the free energy of the slab (per
unit length along the y direction) as a function of the amplitudes uq and vq of the free surface

modes:

4. Infinite Thickness: Renormalization of the Surface Tension

In a semi-infinite smectic, the bulk distortion induced by a free surface with shape u(~) is given
by

U(~, z)
=

£ uqe~~~~ e~~~, ii)

q

which can be obtained from (4) by setting ~ =
0 and taking the limit h

- cc (while keeping q
fixed). In this limit, the energy per unit length resulting from (6) is simply

f
=

£ (r +
li)

q~ )uq)~ =

(r +
fi) /dx ~u'~ ix). (8)

~

2 2

Hence, as discussed in reference iii, the elastic distortion induced by the free surface renormal-

izes the surface tension by an amount 4i.
This result must however be taken with care. In practice, a realistic system is a smectic

drop with a large but finite thickness h, laying on a flat substrate at the contact of which the

layers are bound to be parallel. As can be seen from (6), the bulk distortion energy yields a

contribution c~ q~ only if coth ~q~h
~J

1, I.e., for distortions having completely relaxed before
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reaching the substrate (cf. Eq. ii)). The surface tension renormalization is thus valid only for

wavevectors in the range

q 2 (~h)~~/~ (9)

For such wavevectors the system can be considered as having only surface tension and the

natural relaxation wavevelength of the free surface is defined by the distance L between the

surface boundaries. The validity of condition (9) requires then that the drop be thicker than

L~/~. Since L is a macroscopic length and ~ a microscopic length, this condition is very

restrictive. Taking for instance L
~J

10 ~lm (which is already a small value for experiments),
with ~

~J

100i, the minimum thickness of the drop is found to be 0.1m. This value is

very large because layer ondulation propagate very far in smectics [12]. In the absence of

lateral boundaries the situation is even worse. If the smectic drop has only "surface tension",
the free surface perturbations will relax over the gravitational capillary length tc

=
(f +

li)1/~/(pg)1/~
~J

1mm as for ordinary liquids, since usually li
~J

10erg/cm~. With

L
=

tc, we find that the thickness of the drop must be of order one kilometer to satisfy (9).
Hence, in practice, elastic distortions do not simply renormalize the surface tension: one must

take into account the finite thickness of the drop. We shall see that this amounts to introducing

new capillary lengths arising from the smectic elasticity. As these lengths will be much smaller

than tc, we shall neglect gravitation in the following.

5. Smectic Drop

Let us consider a smectic drop, indefinite in the ~ direction. We assume that it lies on a

flat substrate at the contact of which the layers are bound to be parallel. Were the boundary
condition perpendicular, focal-conic defects would appear in the drop [2], making the discussion

much more complicated. The drop under consideration can be obtained from the slab described

in Section 3 by setting ~ =
0. For an arbitrary surface shape u(~), the bulk distortion (4)

becomes
~

~~°~'~~ ~
"~

~~~~~ j2~ ~~
~~~~

'
~~~~

q

and the drop energy (6) is transformed to

f
=

~j (r +
licoth

~q~h) q~)uq)~. ill
2

q

From the above discussion, we know that if there exists a free surface characteristic length
arising from the smectic elasticity, it must be as large as to yield bulk distortions that propagate

up to the substrate (otherwise the bulk distortion just renormalizes the surface tension). The

corresponding surface wavevectors must then satisfy

~q~h $ 1 (12)

Let us now assume that the characteristic surface distortions have wavevectors in the range (12),
which will be checked afterwards. The shape of the bulk relaxation in (lo)

can then be

approximated by
~~~~~)
)~~)

~~
~J

+ ). (13)
sin q

This approximation is excellent for wavevectors such that ~q~h < 1 and implies an error of

order 7%, maximum at mid-height of the drop, when ~q~h
m~

1. With the above simplification,
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(11) becomes

Ul~> Z)
~

Ii +
)) "(~)> (14)

I.e., the distortion relaxes linearly in the bulk. The total free energy F of the drop, given by
(5), takes then the form

F
=

/d~ Khu"~ + ru'~ +
~u~ ). (15)

6 2 2 h

This approximation corresponds to the expansion of (11) for small q's up to fourth order, since

q2 coth ~hq2
=

(~h)~l + (1/3)~hq~ + O(q8).
The Euler-Lagrange equation associated with (15), which describes the drop free surface

equilibrium, is

~t2m2u~~ 2m~u" + u =
0, (16)

where u~~ denotes the fourth derivative of u, and

2 j~ 1/2

~ /~~r~~ (17a)

1p 1/2

~ /~~B~~ (lib)

are two bare capillary lengths. The first one is a curvature-capillary length as introduced in

reference [11], and the second one is a dilation-capillary length. The general solution of (16)

~~~ ~~ ~~~~~~~ ~

u(~)
=

Re ~j
(Aj~~e~t~ + Aj~~e~~t~j

,

(18)

£=1,2

in which +kg (t
=

1, 2) are the four roots of

k(
=

i
+ (-1)~ 1 ~~ ~1~~ (19)

~
Contrary to the case of a liquid, four boundary conditions are thus required to determine the

shape of a smectic free surface: since smectics can sustain torques, one can fix the tangents to

the free surface in addition to the heights of the end-points. Note that if ~1> m, the roots of

(19) are complex and the solutions are sine-exponential functions. This means that free surface

perturbations will relax with damped oscillations.

For usual smectic-A's, KIT defines a microscopic length
~J

30 I comparable to the layer
thickness. Hence

~1 can be either a mesoscopic length or a macroscopic length, according to

the height of the drop. For a small drop, h
~J

30 ~lm yields
~1 ~J

3000i, whereas for a thick

drop, h
~J

1cm yields ~1~J 5 ~lm. Thick drops generally exhibit steps and defects localized on

their borders, and in the center a large "facet"; capillary experiments could be performed in

this region. From (17),
we have ~1/m

~J

lily. With for smectic-A's li
~J

10erg/cm2,
and assuming a somewhat larger value for r (of the order of the surface tension of molecular

liquids), we expect
~

$ 1. (20)
m

The two capillary wavevectors defined by (19) are then real: the smectic free surface will relax

exponentially on the sides of a perturbation. The corresponding capillary wavevectors, ki and

k2, are of the order of
~1 or m; equivalently, since /Jm =

~h/v5,
we obtain

ki $ k2
~J

(~h)~~/~ (21)
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Fig. 2. A cylinder with radius R
=

10 ~lm pushed against the free surface of a smectic drop with

height h
=

2 cm
(the drop height is much reduced for the sake of clarity). The layers leave the cylinder's

surface at xo =
10 ~lm. For

a
well condensed smectic with ~

=

12i, the bare capillary lengths
are

~1 =
3.6 ~lm and m =

3.8 ~lm, and the capillary Wavelengths are
I/ki

"
3.2 ~lm and 1/k2

"
4.3 ~lm.

The solid lines represent the free surface and bulk layers, according to our approxinlated model. The

dotted lines represent the exact bulk elastic relaxation (cf. Eq. (4)), resulting from the free surface

under consideration. The perfect agreement justifies our approximations.

5.I. VALIDITY OF THE THEORY. According to (12),
our linear theory lies just at the

boundary of its validity domain ~q2h £ 1. For wavevectors q ~J

(~h)~~/2 however, the lin-

ear relaxation approximation (13) is still good, as it implies less than 7% of relative error.

Nevertheless, one must verify that the exponential functions in (18) do not interfere to build

wavevectors q much smaller than ki and k2. This is indeed possible under certain boundary
conditions. For instance, our theory does not apply to smectics within capillary tubes of width

less than (~h)1/~ It applies however well to our starting problem of the relaxation of a free

surface perturbation, as illustrated in Figures 2 and 3. Figure 2 shows the distortion produced
by a cylinder that is pushed against the free surface of a smectic material. The cylinder is

assumed to provide tangential boundary conditions for the layers. This might be realized by
coating the cylinder's surface with silane or any surfactant providing homeotropic alignment of

the nematic director iii. The free surface relaxation involves on each side of the cylinder two

exponential functions that allow to match the height and the tangent of the contact point. The

solid lines represent the shape of the free surface and bulk layers within our approximation.
The dotted lines represent the exact bulk elastic relaxation given by (4), that would result

from the free surface under consideration. The almost perfect concordance between the solid
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Fig. 3. The cylinder is now dragging the free surface to which it adheres (same data
as in the

previous figure). The agreement between the solid and the dotted lines is less good as higher frequency
distortions have appeared.

and the dotted lines shows that our approximation is excellent in this case. Figure 3 shows the

same cylinder now dragging the free surface to which it is assumed to adhere. This might be

realized by applying an upward vertical force on the cylinder, e, g., by means of a magnetic field

acting on a magnetic cylinder to get a tunable force. The interference between the exponential
functions implies now distortions with higher wavevectors. Comparison between the solid and

dotted lines shows that the approximation is less good; however, the qualitative behavior of

the surface is probably still correct.

5.2. EFFECT OF A SURFACTANT OR A MAGNETIC FIELD. Let us consider a smectic-A

drop with a low surface tension r <
li. It might be realized for instance by introducing

a surfactant inside the smectic or by using a drop surrounded by a surfactant isotropic liquid.
Another possibility is to apply on the drop a destabilizing magnetic field H. Indeed, we shall

show that this is somehow equivalent to lowering the surface tension. The magnetic energy
density in the limit of weak bulk distortions is

fm
=

~x~H2 (~~)
~

(22)
2 ~~
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For a destabilizing field, x~ is positive. The magnetic energy yields the contribution x~H2B~l
x

b2U/b~2 in the left-hand side of equation (2). As a consequence, the inverse penetration depth
of a mode with wavevector q is multiplied by ~/1 x~H2 /(Kq2): in the presence of the field,
the layer distortions tend to propagate deeper in the bulk. Hence, we can safely use the linear

approximation (14) as previously. This gives the contribution

Fm
=

/d~ ~x~H2hu'~ (23)
6

to (15), I.e., the following renormalization:

r
-

r x~H2h. j24)

Let us consider the limit of very small r's, for which

~
> 1, (25)

From (19), we deduce that the capillary wavevectors become

where i~
=

-1. Thus, whereas ~1/m varies much as r is reduced, the actual capillary lengths
remain of order (~h)1/~ This is due to the fact that curvature and dilation are strongly

coupled, because bulk distortions must relax on the substrate. The capillary lengths however

have become comple~, which means that a surface perturbation should relax with damped
oscillations. This prediction would be interesting to check experimentally. For strong fields,

the renormalized r can become negative and the capillary wavevectors purely imaginary: a

free surface instability will develop. According to (24), this will occur when xaH~h is of order

r, I.e., for magnetic fields with coherence length iii

(H ~J11. (27)

With
~1

in the micron range, this value is accessible experimentally.

5.3. VICINITY OF A SECOND-ORDER NEMATIC TRANSITION. Close to a second order

phase transition, the dilation elastic modulus B tends to zero. Hence the characteristic length

m diverges, yielding now

~
< 1. (28)

m

In this case, we have simply

The actual capillary lengths coincide
with

the bare
nes.

The relaxation of a free surface

erturbation
will

therefore involve
first a short, then a long capillary length. If the

the boundaries are not onstrained, we expect that the short scale relaxation will transform

the boundary
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z

8~

Fig. 4. The free surface of
a

smectic-A wetting a
wall that forces

a
perpendicular anchoring of the

smectic layers. Usually, the free surface relaxes exponentially with two comparable decay lengths. In

the vicinity of a second-order nematic transition, however, the decay length are well separated. As a

result, the actual zero contact angle is transformed to the Young angle after a "foot" of width ~.

Let us work this out in a precise case. Consider for example a smectic-A free surface con-

tacting a boundary wall treated in such a way that the smectic layers are constrained to orient

normally to the wall's surface (Fig. 4). This might be realized by a surface treatment, such as

mechanical rubbing, providing a planar alignment of the nematic director [ii. Let us assume

that the smectic tends to wet the wall, I.e., that the difference in surface free energy between

the dry and the wet wall is A~ > 0. According to (18), the profile of the free surface is given
by

~~~~
= ~~

~2 ~-ki~ kl -k~~j
~~~~k2 kl k2 kl

where uo is the meniscus height. In the limit ki < k2, the total energy of the smectic given
by (15) is

F(uo)
~J ((Kh k)k2 +

~rki
+

~ ))
11(, (31)

2 2 2 h
i

If the meniscus height is free to adjust, the equilibrium 110 is obtained by minimizing F(110)
A~110. This yields

~~=

~'~
~.

(32)
ki (1/6)Kh kik2 + (1/2)~ + (l/2)Bh~~ki

From the values of ki and k2 given by (29), the first term of the denominator is of order K/~,
much smaller that r since ~ diverges close to a second-order phase transition. As the third

term of the denominator is exactly equal to r/2, the whole denominator is equal to r. It

follows that the angle extrapolated from the long scale exponential, 9
=

kiuo> is the Young
angle

fly
~

),
(33)

For a simple van der Waals liquid, a similar phenomenon exists: the macroscopic Young contact

angle is only established after
a microscopic foot, the shape of which is dictated by short range

interactions [13]. In the smectic case, what exactly happens is that the curvature energy is

negligible in the long scale exponential and the dilation energy c~
u2 plays the same role as

gravity for a simple liquid.
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From the beginning, we have neglected the possibility or the molecules to tilt with respect

to the layers' normal. This approximation is correct as long as the distortion scales are large
compared to ~i

=
K/Bi where EL is the tilt elastic constant. Usually, as EL

~J

10~ cgs, ~i
is a microscopic length and the approximation is justified. However, ~i diverges as Bi

-
0

in the vicinity of a second-order transition. Our model will be valid as long as ~1 » ~i, I.e., as

long as EL » f/h. This is not a drastic condition. With r/h
~J

10 100cgs for a 1cm high
drop, we have r/h < 10~ cgs, hence our model is correct except very close to a second-order

nematic transition.

6. Smectic Film

Let us now consider a smectic film with a macroscopic thickness
~J

h. Usually, free standing
films are very thin [7-10], but there is no difficulty in principle to realize thick films, e.g., with

h
~J

100 ~lm. In the case of thin films, a microscopic length similar to ~t was already introduced

to discuss X-rays roughness measurements of monolayers [14] and to discuss the exact shape
of adherent membranes [15]. It is necessary however that h be macroscopic in order that the

lengths (17) play the role of capillary lengths.
The film is identical to the slab described in Section 3. To discuss its capillary properties,

let us make the same linear approximation as in the case of the drop. We thus replace (4) by

For distortions in the range (12), the above approximation implies a maximum error better

than 2~ when u and v are locally opposite, or better than 11 ~ when
u and ~/ are locally equal.

Within this approximation, the total free energy F of the film, given by (5), can be expressed
in the real space as

F
=

/d~ Kh(u"~ + v"~ + u"v") +
)

(u v)~ + r(u'~ + v'~ (35)
6 2 2

6.I. CAPILLARY MODES. The Euler-Lagrange equilibrium equations associated with (35)
define a system of two coupled linear differential equations of fourth order. It can be diagonal-
ized by setting

u(a~)
=

ju(~) + u(xjj (36a)

e(~)
=

j
ju(x) u(x)j. (36~)

U(x) describe the medium layer of the film, and e =
0U/bz describes the film dilation, which is

constant throughout the film in the approximation (34). In terms of these new variables, the

energy of the film writes as

F
=

/d~ ~Kh 3U"2
+

~ "~)
+ Bhe~ + f

U'~
+

~ '~)
(37)

6 2

which yields the now decoupled equilibrium equations

~
~l~u~~~l fi"

=
0 (38a)

4

/J~m~e~~~~ m~e" + e =
0 (38b)

4
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a) --

#

s_
~K

~~

/~ ~/
kpk~

Fig. S. Capillary modes of
a

thick smectic-A film. a) The "average" mode describing the medium

layer R. Only the curvature-capillary length
~1

is involved. The film average layer makes
a

straight

segnlent after screening the tangent boundary conditions. b) the "differential mode" describing the

dilation e of the film. Its behavior is similar to that of the surface distortion in a snlectic drop.

The film has thus two independent modes: an average mode corresponding to I (Fig. 5a) and

a differential mode corresponding to e
(Fig. 5b). These modes are analogous to the curvature

and peristaltic modes of thin films. The shape of the medium layer, solution of (38a), is given
by

U(~)
=

A + ET +
Cei I

+ De~ if (39)

The dilation of the film, solution of (38b), is given by four exponential functions or sine-

exponential functions, as in (18), with

k(
=

i
+ (-1)~ ~~ 2/J~~ (40)

A thick smectic film has therefore three independent capillary lengths: /Jv5/2, the curvature-

capillary length relative to the medium layer, and ki and k2, the mixed curvature and dilation-

capillary lengths relative to the layer's dilation. The latter are
vstimes larger than in the case

of the drop. In the differential equations (38), one can define eight boundary conditions: the

positions and tangents ofthe four edges ofa piece offilm. Making use of (36), these conditions

can be transformed into conditions on the boundary values of I and e and their derivatives.

Note that if the lower free surface is free to adjust, by minimizing with respect to its boundary
conditions, some dilation of the film will in general appear, even if only the upper free surface

is constrained.

6.2. EFFECT OF A SURFACTANT OR A MAGNETIC FIELD. As in the case of the drop, f

can be reduced by using a surfactant or by applying a magnetic field. In the latter case, using
(22), (34) and (36),

one obtains the film magnetic energy

Fm
=

/d~ ~xaH~h (3R'~ +

~~
e'~) (41)

6 4
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yielding a renormalization of r of the order -xaH2h. Reducing r does not affect much the

"differential" mode. Indeed, due to the similitude between (19) and (40), the moduli of the

capillary wavelengths remain
~J

(~h)~/2, I.e., mesoscopic. However, reducing r has a strong
effect on the "average" mode, since the capillary length /J diverges as r

-
0. Hence, the

capillary length relative to the relaxation of the medium layer becomes macroscopic and should

be easily observable by means of optical microscopy.

6.3. VICINITY OF A SECOND-ORDER NEMATIC TRANSITION. As m increases while B
-

0,

one of the capillary length of the "differential" mode, k/~, becomes macroscopic, whereas the

other one, kp~, remains mesoscopic. The capillary length of the "average" mode remains also

mesoscopic.

6.4. CONFOCAL FILMS. Smectic textures sometimes consist of perfectly equidistant layers,

as for instance in focal conic defects [2,16,17]. Textures made of equidistant layers have no

dilation and are
called "confocal", since all layers share a common curvature center locus, also

called focal surface [18]. Let us investigate under which condition a thick smectic film will be

confocal.

A confocal film has equidistant layers. In the frame of weak distortion elasticity, this means

that bU/bz
=

0: all the layers have the same identical shape. The problem we are interested

in can thus be addressed in the following terms: if we impose some boundary conditions on the

upper free surface of a film while the lower one is free to adjust under which conditions

will the lower free surface follow exactly the upper one? This problem is reminiscent of the

"cicatrisation length" introduced by de Gennes for a thin Van der Waals film deposited on a

rough substrate [13]. To answer the above problem, let us consider a variation bvq at fixed uq.
It yields a variation of the film energy per unit length (6)

b f
=

£
q~ bv( (r +

li coth ~hq~) vq

~

~
uq (42)

sinh ~hq
q

By minimizing, we find that the equilibrium vq for a fixed
11q

is given by

~q = "~~ (43)
cosh ~hq2 + sinh ~hq~

li

In the range ~hq~ $ 1, each mode is thus reduced by a factor f(q)
=

(fill)~hq2 +

O(~2h2q~ ). This shows that the shape of the lower surface relaxes in order to reduce its surface

energy principally, then the film curvature energy in second approximation. In general, films

will not be confocal since their capillary wavevectors are in the range q ~J

(~h)1/2. However,
if r < li, the second order term in f(q) becomes negligible, and the film will be fairly

confocal in the whole capillary range q $ (~h)1/2. The same result holds if the film is subject

to a destabilizing magnetic field, which reduces the effective r, as previously shown. In such

conditions, a film with one unconstrained free surface will be confocal. The dilation e is then

zero, and the upper free surface u[~) is identical to the medium layer b(~). Hence it displays a

pure-curvature capillarity as predicted in reference [11], described by equation (38a) in which

/J is now macroscopic.

7. Conclusion

How does the free surface of a smectic-A relax on the sides of a perturbation? In usual smectic

drops, the layers are parallel to the free surface on the upper side, and to a flat substrate on the
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lower side. Hence, any surface perturbation induces a bulk distortion that must relax at the

substrate level. If the distortion wavelength, d, satisfies d < (~h)1/2, with h the drop thickness

and ~ a characteristic microscopic length iii, the surface perturbation relaxes exponentially

over the depth
~J

d2/~, before reaching the substrate. In this case the bulk distortion energy

simply renormalizes the free surface energy iii. For larger perturbations with d 2 (~h)1/2, the

distortion propagates up to the substrate as an hyperbolic sine function, whose characteristic

length is then larger than the drop thickness. This allows for a dramatic simplification: the

bulk relaxation can be fairly approximated by a linear function. We showed that the surface

relaxation on the sides of a perturbation always belongs to the second class. Indeed, a system

possessing only "surface tension" would spread up to the surface boundaries the distortion

on the sides a perturbation (or relax over the gravitational length
~J

lmm): this yields bulk

distortions reaching the substrate for every reasonable drop.

In the approximation that the bulk distortions relax linearly up to the substrate, the elastic

free energy of the drop can be expressed as a simple functional of the free surface shape.
In a self-consistent analysis, we deduce that the natural surface relaxation length around a

perturbation in a smectic drop is of order (~h)1/2 The free surface shape is governed by

a fourth-order linear differential equation in which two bare capillary lengths appear: /J =

[(K/r)h]1/~
a cllrvatllre-capillary length, and m =

[(r/B)h]1/~
a dilation-capillary length. For

drops thickness in the range 0.01-1cm, these length are comparable and in the range 0.1-5 ~lm.

The actual capillary lengths (resulting from the differential equation) are combinations of the

bare ones of the same order. A surface perturbation relaxes with two exponential functions

on each side of the perturbation, allowing to match four boundary conditions: the height and

the tangent of the free surface at each boundary. The validity of our hypothesis of linear bulk

relaxation has been checked in various situations. It is correct in general but can possibly be

wrong when the exponential relaxations interfere to build short wavelength distortions. We

have discussed the case of low surface tensions or, equivalently, the application of a destabilizing
magnetic field. We found that the surface relaxation should involve damped oscillations still

with characteristic length
~J

(~h)~/2. This would be interesting to check experimentally. In

addition, magnetic fields with coherence length smaller than
~1

should produce free surface

instabilities. In the vicinity of a second-order smectic-A to nematic transition, the two capillary
lengths coincide with the bare ones and the dilation-capillary length becomes macroscopic.

The linear bulk relaxation approximation can also be applied to thick smectic films with

two free surfaces. It yields a system of coupled fourth-order differential equations that can

be diagonalized in terms of two independent variables: the medium layer shape b and the

film dilation e. The "average" mode b is governed by a fourth-order capillary equation that

involves only the cllruatllre-capillary length /J. Hence, to join two points at different heights with

arbitrary tangent boundary conditions, a smectic film will first screen the tangent boundary
conditions exponentially over the length /J, then build a straight segment in between. The

"differential" mode e is governed by an equation almost identical to that of the drop: the film

dilation relaxes with two exponential waves with characteristic length
~J

(~h)~/2
on each side

of the perturbation. A perturbation exerted on one free surface, the upper one for instance,
will in general excite both the "average" and the "differential" mode. For low surface tensions,

or equivalently if a magnetic field is applied on the film, the boundary screening becomes

macroscopic as /J diverges. In addition, the film dilation is not excited if only one free surface

is concerned by the perturbation. In this case, the film builds a "confocal" texture as all layers
follow identically to the medium one k [11]. For the "differential" mode the conclusions are the

same as in the case of the drop. Finally, analysing the free surface relaxation around floating
objects could provide interesting measurements of solid-smectic adhesion energies.
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