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Abstract. Based on the recognition made by de Gennes that the excluded volume parameter of

poly-ethylene-oxide (PEO) might depend on the local monomer density, we study the structure of

PEO brushes in the limit where a local minimum is present in the free energy functional. Within the

frame work of self-consistent-field theory advocated by Miller, Witten and Cates, the model

predicts that a very dense state exists near the wall as the strength of the attractive interaction

between the backbone and the wall is tuned. This dense state occurs through the first order phase

transition. Even without an attractive interaction, for large surface coverage, we find the collapse

of polymer chains near the wall.

1. Introduction.

The study of statics and dynamics of polymeric brushes has received renewed interest

recently [1-13]. The brushes, formed by linear polymers with their ends anchored at the solid-

liquid interface, can provide long range repulsive forces between particles, and hence forbid

the formation of larger aggregates i,ia coagulation. For this reason, it is widely accepted as an

effective method of colloidal stabilization. In the past few years, there have been several major

steps toward our understanding of these polymeric brushes. The first one was the scaling study

by de Gennes [I] and Alexander [2]. The next major step was the discovery of the parabolic

potential within the framework of self-consistent theory [4-6]. de Gennes was the first who

recognized the failure of classical analysis based on simple free energy arguments and made

several scaling corrections to the classical results. Alexander further refined his theory by

considering the stretching energy and presented several new result, Among them was the step

function density profile of the brush and, in particular, the prediction of the first order phase

transition : when the attractive energy between the backbones and the wall is strong enough,

the brush undergoes a first order phase transition from a pancake to a fully stretched brush

formation. Based on his scaling results, Alexander showed analytically that the surface

pressure, H, is not a monotonic function of the surface coverage a. Instead, there exists an
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unstable regime where H in fact decreases much the same as what is happening in van der

Waals liquids. He thus concluded that the transition should be first order.

Recently, Ou-Yang and Gao[12] presented the results of dynamic light scattering

experiments on the adsorption of water-soluble PEO onto polystyrene latex particles. The PEO

polymers used in their experiments have hydrophobic groups at both ends, which prefer to stay

on the polystyrene surface rather than in the bulk (water), In addition there exists an attractive

interaction between the monomers along the backbone and the polystyrene surface. Thus, this

system appears to be an ideal realization of the polymeric brushes considered by Alexander.

Ou-Yang and Gao measured the hydrodynamic radius, R, of the latex particle as a function of

bulk polymer concentration, and observed a sharp rise in R over a quite narrow window of

concentration, While the experimental set-up of this experiment, apart from the fact that the

polymers have two absorbing ends instead of one, is similar to that considered in Alexander's

paper and hence the result appears to confirm Alexander's picture of Pancake-Brush transition

in the regime of low surface coverage, the experimental result without hydrophobic ends seems

to indicate that a different mechanism other than what was considered by Alexander might be

in action : the study of the adsorption of homopolymers of PEO without hydrophobic groups at

both ends reveals that the hydrodynamic radius appears to increase without bound as a function

of bulk concentration, an indication that PEO polymers might pile up on top of each other. This

behavior is quite unusual and contrary to most adsorption studies reported to date, where quick
saturation occurs. While it is not clear at this moment what is responsible for such an unusual

behavior, we recognize that it seems to be a clear indication that a different mechanism other

than the one proposed by Alexander could be in action for PEO brushes in the regime of high

surface coverage. This is the motivation of this study.

2. Polymeric brushes with density dependent excluded volume parameter.

Our starting point is a recognition first made by de Gennes that the excluded volume

parameter, w, of PEO might depend on polymer density [13]. When a monomer (of PEO) is

surrounded by solvent such as water, the interaction between monomers is mediated through
the hydrogen bonding between solvent molecules and monomers, and hence could be density-
dependent. For example, in a region of higher monomer density, solvent molecules are

expelled causing the suppression of the formation of hydrogen bonding. Thus the excluded

volume parameter, w, might reduce its strength in a region of high monomer density. Indeed,
this conjecture seems to be consistent with a recent experimental result where PEO polymers
appear to have formed aggregates in water [14]. Aggregation could occur if the excluded

volume parameter switches its sign in a region of high monomer density and becomes

effectively attractive. Such a situation might have a substantial impact on the way polymers
segregate or form aggregates [13]. In this work, however, we exclude the situation where

w
becomes negative because for PEO brushes the density does not seem to be that high.

Suppose that
w

weakly depends on polymer volume fraction, ~fi, such that

W(lP (rii
= w2' (1 ii' 1° (r) + i~ ~P (r)~ + ). (l)

We include a higher order term in order to ensure that
w

remains positive in a good solvent.

Without such a term, w
will keep decreasing, changing sign at ~fi

=

I/fj. The second order

term will bend it over to positive values. Now, due to the higher order terms in

w, the total potential energy of the polymer chain (or backbone), U(r)
w

M.~fi ~, will in turn

contain higher order terms,
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where we have included an attractive interaction term, f(r), between the backbone and the

surface with s ~
0 being its strength. f(r) is expected to be a rapidly decreasing function of r.

In this work, we assume that

f(rl
=

0 ((r( A ) (2b)

where 0 is the step function and A is the range of interaction. The polymer volume fraction

~fi(r) is given by

K N

~fi (r
=

£ dn (r~ (n r ) (2c)
0

where N is the total number of monomers in one chain and K is the total number of adsorbed

polymer chains on the wall. The surface coverage a on a wall of linear dimension

L is thus given by
a =

K/L~. We now expand the interaction energy U(r) around the average
concentration 4 (r

=

( ~fi (r )). Writing ~fi (r
=

4 (r) + ~fi (r ), we find

IN N N

U(r)
=

3~ M/~ dn4 (r~ (n)) w~ dn4 ~(r, (n ii + w~ dn4 ~(r~ (n))
s
f (r~ (n )) (3)

0

where we have utilized the fact that for any spatially dependent function g(r),

IN
dr~fi (r ) g (r )

=
3~ dng (r, (n (4)

0

Also notice that ~fi ~(r
=

2 ~fi (r) 4 (r) + (& ~fi ~(r)) 4 ~(r) and 4 (r) is a scalar and

~fi(r) is an operator which, upon acting on the function g, produces (4). In the Mean field

approximation we drop out all the terms proportional to ~fi (r). Adding the elastic energy to

the potential energy, we finally obtain the Mean field Hamiltonian of the system,

IN N N

H
=

3, dn (%r~ (n )/%n )~ + w~ dn4 (r~ (n ii w~ dn4 ~(r~ (n11 +

0 0 0

N

+ w4 dn~b 3(r~ (n ii
s

f (r~ (n
)j

(5)

Equilibrium configurations are determined by minimizing the above Hamiltonian w-r-t- the

path r~ (n), I-e-, &H/&r~(n)
=

0, Note that the system has translational symmetry along the

x and y axes. Hence, we only consider the equation of motion along the z
axis, I-e- the vertical

axis to the absorbing wall, which yields the equation of motion for z~(n) :

d~z(n )/dn~
=

du(z(njj/dz (6j

with

u(z (n ii
= w~ ~b (z (n )) w~ ~b

2(z(n))
+ w>~ ~b 3(z (n ))

s
f(z (n)) (7)

where we have suppressed the index I. Equation (6) is the equation of motion for a particle of

unit mass (m
=

I ) traveling in a potential, U, with zero initial velocity (because there exists no

stress at the far end of the chain) if one regards the monomer index n as time. Miller, Witten,

and Cates [6] made a crucial observation that the functional form U must be parabolic, namely

U(?)
=

B(z~ h~), because no matter where the particle initiates its motion, it arrives at the

origin (r
=

0) at the same time, more precisely at I/4 of the period. Note that the potential
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vanishes at the hei~ht of the brush, z =

h, Since the period of the harmonic oscillator is given

by T
=

w/2gr
=

(1/2 gr
,$ with the spring constant k

=

2 B ad the period T
=

4 N, we find

B
=

gr~/8 N~, Hence, the exact expression for the potential U(z) is given by :

u(zi
t

(«2/8 N21. (h2 z21. (81

Note that the right hand side of equation (7) gives the real physical interactions while the

equal time constraint determines the left hand side, I,e, equation (8). Next, the density
4 (z) in (7) must satisfy the sum rule :

h

film
=

dZ~b (Z) (9)

0

whish is simply a statement of the conservation of mass.

Our task is to solve equations (7), (8) and (9) self-consistently in order to obtain information

on the structure and nature of the thermodynamic transition of PEO brushes as the control

parameters are tuned.

We now present numerical results.

3. Results.

We first make a few qualitative observations.

First, notice that the function at the right hand side of (7) is cubic in the density

4, which can either continue to increase or has a local minimum over a narrow range of

parameters. More precisely, consider the derivative of the cubic function with
e =

0,

g (4
=

2 w~ 4 3 w~ 4 ~
+ 4 w~ 4 ~

g (4 ) has two solutions, 4 and 4
~,

if

9 w(
~

32 w~ w~, for which case a local minimum exists. If f(4
~

~
0, the local minimum is

above zero. But g has no solutions if 9 w>( ~
32 w~ w~, for which case the function continues

to increase without bound. We expect that interesting results might occur in the former case as

will be shown shortly. To the best of our knowledge, experimental values for w~ and

w~ for PEO are not available at this moment but we assume in this work that a local minimum

exists for PEO brushes and the control parameters satisfy the inequality in such a way as to

insure this.

Second, with
w>~ = w>~ =

0, exact solutions for (7) and (8) can be readily obtained [15]. In

this case, inspection of (7) reveals that the density profile is simply the parabolic profile

modified near the wall by the interaction term sf(z). An integration of (8) then gives us the

analytic form for the height h as a function of external parameters.

Now the question here is whether we expect quantitative changes with the presence of

w~ and w~. With w'~ = w~ =

0 the surface coverage r
=

4 (z
=

0) is a continuous function of

either the strength of the interaction
s or the surface density a. However, in the presence of

w~ and w~ with a local minimum present in the free energy functional f(4 ), we expect a jump

in r as the interaction strength e increases. This is graphically shown in figure I. Graphically,
r is given by the value of 4 at the intersection of the horizontal line and the curve. Therefore,

we find for e ~ ei, only one solution exists which is a monotonically increasing function of

F. However, for
e~ ej, three solutions exists, which signals the first order transition.

Conventional Maxwell construction predicts a jump in the surface coverage r over a very

narrow range of the interaction parameter, thus making a nontrivial prediction for PEO brushes

that the surface coverage undergoes a first order phase transition if plotted as a function of

interaction strength, e, between the backbone and the wall.

In figure 2 is plotted the density profile for
e=-

0.25 and A=6 with w~= I,

w~ =

-0.6 and ~>~ =

0.I. If the strength
F

is increased from zero, the density profile
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,

#

Fig. I. Free energy functional f(4 2
M>~ ~b 3 M.~ ~b

~
+ 4 w~ 4 as a function of local polymer

density 4. If 9 w(~ 32 w~w~, then a local minimum exists. The surface density r
=

4 (z
=

0) is

obtained graphically by the intersection between f(4 and the straight line. For the interaction strength

e ~ ej, only one solution exists, while for Fj ~ F ~ F~ three solutions exist. Conventional Maxwell

construction yields a jump in r as e crosses e~.

Segment Denswy Profile, N.50

em0.2, oW.03, w2ml, w3m0.6, w4W.1
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0
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z

Fig. 2. Density profile 4 (z) for
F

0.25. Note that a very dense state exists near the wall.

4(z) is initially given by ~(z)
=

U(z)+ ef(z), until at around (e(
=

0.25, where

numerical solutions reveal that a dense state appears near the wall: I.e., at zw0,

r
=

4 (z
=

0 rises by nearly a factor 7. This dense state occurs with the presence of the two

body term and thus is distinctly different from that occurring in a poor solvent, where the two

body interaction term i>anishes and the third body attractive interaction term drives the brush to

collapse near the wall [15]. The prediction of this dense state near the wall is one of the most

interesting features of this work.

In figure 3 is shown the surface coverage r as a function of
e

for the parameters

w~ =

1, w~ =

0.6, and w~ =

0. I, for which a local minimum exists. The chain length is

N
=

loo and the surface density
« =

0.05. Interesting questions involve the structure of the

PEO polymers adsorbed onto the latex particles. First, we notice that the attractive interaction
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Density at Wall vs. GraflJng Density
N=100

3

0

0 0.2 0.4

a

Fig. 3.- Surface density r as a function of interaction strength
F.

Note the discontinuity in

r over a narrow range of
F,

is short range and is operative only near the wall. Hence it is reasonable to assume that

A « h, in which case we suspect that the density profile of PEO brushes away from the wall

might not be affected by the presence of the very dense state mentioned above. In order to

confirm this picture, we also plot the brush height h as a function of surface coverage

a
when such a dense state exists near the wall. As shown in figure 4, there are regions where

height h increases relatively slowly. For N =150, such a plateau occurs in a range of

a =

0.17 0.26 and a ~
0.55, which is not shown in the figure. Examination of the density

profile reveals that the dense state starts to appear at the beginning of the plateau regime and

the marked increase in r is observed near the end of the plateau regime, beyond which

r increases slowly. Hence, it appears that the onset of the dense state does not signal the

transition to the pancake state. The existence of the dense state does not seem to alter the

density profile much, and it exists in the brush regime. We thus do not associate the

appearance of the dense state to the onset of pancake regime.

H vo. GraflJng Denolty, N=I So

w2ml, w3W.6, w4W.1, w023

60

40

20

0

0 0.05 0.1 0,15 0.2

a

Fig.4.-Brush height, h, as a function of surface coverage «.
There exists a regime where

h increases relatively slowly, where polymer chains are fully stretched.

In a real experiment, the polystyrene latex particles onto which brushes form are in

equilibrium with the bulk, satisfying the relation, A + In («)
=

log c, with A being the

absorption energy of the hydrophobic group onto the latex particle and, c being the bulk

concentration. In a typical experiment,
«

is about 0.05-0. I, beyond which micelle formation
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occurs in the bulk, making it very difficult to study the adsorption in high concentration. For

this reason, even though the increase beyond the plateau regime is mathematically well defined

in our model, it is unlikely that such a regime can be realizable by a competitive adsorption as

was done in reference [12]. But it might be easily done by controlling the chemistry of the

hydropholic group at the end.

Finally, we point out that the model presented in this paper predicts the existence of a dense

state even in the absence of an attractive interaction if the surface coverage, «, is high. We

show in figure 5 the density profile with
e =

0 for (al « =

0.05 and (b) « =

0.635. For low

surface coverage, tuning w~ and
w>~

do not change the density profile much. However, for high
surface coverage, note the appearance of the dense state near the wall, The polymer chains are

collapsed near the wall, which is caused by the substantially enhanced attraction due to the

w>~ term in (I) for high «. We show how such dense state exists. take for simplicity the de

Gennes-Alexander step function profile [1, 2]. Then equation (9) gives a relation between the

height and «, Substituting it back to (7), we find a self-consistent equation for the surface

coverage 4 (0) as a function of
« and s, the control parameters. For

s =

0, by increasing

a, the point where two graphs meet moves to the right and thus produces a jump beyond the

critical «~, For a fixed «, changing
s

would produce the same result. Such dense states without

the attractive interaction might be useful in understanding the formation of aggregates of PEO

chains in an aqueous solvent [13],

In summary, then, we have studied the conformation of PEO brushes in the limit where a

local minimum exists in the free energy functional and showed some of the unusual features of

PEO polymeric brushes in an aqueous solvent, In particular, we showed that a very dense state

exists when the interaction strength between the surface and the backbone reaches a critical

value, This dense state occurs through a first order phase transition, We have also observed a

plateau regime in the brush height when plotted against the surface coverage, where the height
scales linearly with the polymer chain length N, Recently Bekiranov et al. showed by the Flory

argument that a single chain PEO in an aqueous solvent exhibits unusual pressure dependence
because of the hydrogen bonding [16] between the monomer the monomer and solvent, which

appears to be in line with the Hamiltonian chosen by us in this paper.

Segment Density Profile, N=100

mo.05

0.25

0.2 segment Density Profile, N=100

_

mo 635

0.15 Q=0.6, a4m0.1

"~

~
~

_

_

a3=0.6, a4=0. I

1.5 "

°.°5 a3=0 a4=0

0 0

0 10 20 30 40 0 20 40 60 80 100

z z

ai bi

Fig. 5. Density profile without the attractive interaction
e

0. (al PEO brush with w~ o.6 and

M>~ =

0.I for
« =

0.05. Also is plotted the density profile with
M>j = M,~ =

0. There are very little

differences, (b) PEO brush with w~ 0.6, w4 0.I for
«

0.635. In this case, the polymers are

smashed near the wall and a very dense states appears.
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Note added in proof : density cannot be greater than one. So, all the graphical solutions must

be confined for 0
~

4 ~1. Density profile in figures 3 and 5 can be made below one with

appropriate parameters such as w>~ =

0.93, w~ =

1.67 or w>~ =

l.4, w~ =

2.1, which seem

to be more realistic. Kim and Cao [18] recently observed a dense state of PEO monolayers at

the air-water interface, which seems to be a strong confirmation of the prediction of this paper.
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