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Abstract, Variational methods are used to develop the governing equations that describe the

flow of spatially invariant uniaxial discot>c nematic liquid crystals of variable order j since the

equations are based on a phenomenological truncated e~pansion of the entropy production, the

equations are approximations. Restrictions in the phenomenological parameters appearing in the

governing equations are imposed taking into account the ordering of the discotic phase. Numer<cal

and analytical solutions of the director n and alignment S are presented for a given uniaxial

extensional start-up flow. The unit ~phere description of the director is used to discuss and analyze
the sensitivity of the director trajectories and the coupled alignment relaxation to the initial

conditions (no, S,,) and to the alignment Deborah number (Del, The numerical results are used to

characterize the relaxation of the tensor order parameter Q and to compute the steady flow

birefringence. When the poles of the unit sphere are along the extension axis and the equator lies in

the compression plane of the flow, it is found that the director trajectories belong to the meridians

(great circles through the poles) and the dynamics follows a geodesic tlow when subjected to flow

the director follows the ~hortest path that connect~ the initial orientation no and the equator

(compression plane). As typical of geodesic flows, there is a strong sensitivity to initial

conditions when no lies on the poles no predictions on the eventually steady director orientation

are possible. If the prior to flow orientation is close to the poles the coupled alignment relaxation

along the geode~ics is nonmonotonic and for large De the discotic may become temporarily
iwtropic. The couplings between n and S are captured by the tensor order parameter relaxation. At

steady state, the director lies on the equator, and the alignment and birefringence increase with

increasing De.

1. Introduction.

Discotic nematic liquid crystals are an important class of mesophases that occur naturally in

carbonaceous mesophases [1-3]. These mesophases are formed by condensation of aromatic

rings and tend to adopt a uniaxial discotic nematic phase Nd [4, 5], with the unit normals to the

disc-like molecules more or less aligned along a common direction (see Fig. lb), represented
by the director n in what follows we use n and orientation interchangeably. These materials

find practical use in the spinning of high performance carbon fibers [2, 3, 6], and
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understanding their flow orienting behavior in the presence of uniaxial extensional defor-

mations is of practical utility. As a first step in developing a basic qualitative understanding of

such complex nonlinear problem, in this work we consider the flow orienting properties of a

model incompressible discotic nematic liquid crystal of variable degree of order in isothermal

uniaxial extensional flow.

Previous work [7-11] on the rheology and flow-induced orientation of uniaxial discotic

nematics assumed that the scalar order parameter S remains unaffected by the flow in what

follows we use S and alignment interchangeably. The validity of this assumption for low molar

mass materials justifies then the use of the Leslie-Ericksen (L-E) theory [12, 13] for uniaxial

nematics with the proper values of the material parameters. The important differences in sign
and magnitude of the material parameters corresponding to uniaxial rod-like and discotic

nematics follow from the fact that rod-like nematics orient their longest molecular dimension

along the director while disc-like nematics orient their shortest molecular dimension along the

director, As is well-known, the orienting properties of uniaxial nematics during shear flow are

governed by the sign and magnitude of the tumbling (reactive) parameter A for aligning (non-

aligning) rods A
~

l lo
~

A
~

l ), and for aligning (non-aligning) discs

A
~

l(-1~ A ~0); the tumbling parameter A is given by the negative ratio of the

irrotational torque coefficient (y~) and the rotational viscosities (y,), and represents the

coefficient of the ratio of strain to vorticity torques acting on the director n. Previous work

[8, 9] focused on the orienting properties of aligning uniaxial discotic nematics in steady shear,

and it was found that shear orients the director in the shear plane and at a steady angle

9, lying in the 90° w 9 <
135° sector with respect to the flow direction. In steady shear-free

uniaxial extensional flows, the orienting behavior of uniaxial nematics is again determined by
the sigh of A when A

~
0 the director aligns along the stretching (extension) direction, and

when A ~0 the director aligns somewhere in the compression plane, orthogonal to the

stretching direction [I I].

For materials of larger molecular weights the coupling between the director and the scalar

order parameter should be retained [14]. This coupling introduces additional nonlinearities

through the dependence of the generalized Leslie coefficients on the scalar order parameter, as

shown in various works [14-18]. The nonlinear shear orienting behavior of rod- and disk-like

nematics is now dependent on the shear rate, and flow-induced transitions involving aligning
and non-aligning modes are triggered by varying the shear rate [18-20]. On the other hand, the

behavior of rod-like nematics in extension is less dramatic since the competition between shear

and vorticity is absent in an irrotational flow, and the effect of flow is to orient the director

along the stretching direction with a concomitant increase in the scalar order parameter. A

more complex situation presents itself for the uniaxial extension of discotic nematics, since

they may orient anywhere in the compressional orthogonal plane, and may exhibit a nonlinear

relaxation of S, The former observation explains the various observed cross section

rilorphologies of mesophase carbon fibers, in which the normals to the molecular planes lies in

the p(ane normal to the fiber axis [6, 21].
Our main objective in this work is to establish the relevant qualitative features that describe

the relations between uniaxial extensional deformation inputs and orientation and alignment

responses in an idealized discotic nematic liquid crystal. In the present paper the

phenomenological properties of the particular model discotic nematic liquid crystal chosen for

study are not fitted to those of any existing real material, and, as shown below, their choice is

based on previous results. The particular objectives of this paper are

ii) to formulate and solve an approximate phenomenological theory that describes the

orientation and alignment of a model discotic nematic liquid crystal of variable alignment,
during isothermal, incompressible, uniaxial extensional flow
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(iii to characterize the sensitivity of the director paths to the compressional plane, to the

initial conditions and to the extension rate by using numerical simulation

(iii ) to characterize the alignment relaxation along the director paths, to the initial conditions

and to the extension rate by using numerical simulation

(iv) to determine the minimizing principle that governs the director trajectories to the

compression plane.

In this paper we use the unit sphere description of nematics [22-25] only to facilitate the

discussion and classification of the numerical results that pertain to the above mentioned
objectives (it), (iii) and (iv).

The organization of this paper is as follows. In section 2 we define the coordinate system and

the state variables, derive the governing equations, and briefly present the elements of the unit

sphere description used to discuss and classify the numerical solutions. A brief description of

the numerical method used to integrate the governing equations is presented. In section 3 we

present, discuss, and classify the solution vector, consisting of the time dependent director and

alignment fields, obtained from numerical integration of the governing equations. Typical
computations of the tensor order parameter relaxation and steady flow birefringence are

presented.

2. Governing equations.

2, I DEFINITIONS OF COORDINATES. ORIENTATION AND ALIGNMENT. In this paper we study
the microstructural temporal and spatially invariant response of a model uniaxial discotic

nematic subjected at time t
=

0 to a constant uniaxial extension rate @. In what follows we use

Cartesian tensor notation, repeated indices are subjected to the summation convention [26],

partial differentiation with respect to the jth spatial coordinate is denoted by a comma (I.e.

v,,,
=

dv,/d,j) or by the symbol dj ii-e- v,
~

=
d,v,), and a superposed dot denotes the material

time derivative (I.e. (
=

~~
=

dS/dt + v, d,S). The microstructure of the nematic is charac-
dt

terized by the uniaxial tensor order parameter Q,,(t) [13] :

Q,~ =

Sin, n, 3,~/3 II a)

where the following restrictions apply

Q,,
=

Q,, Q,~
=

0 II?
~

S
~

l ; n, n, =

I (16)

and 3,, is the unit tensor. The magnitude of the scalar order parameter S is a measure of the

molecular alignment along the director n, and is given by S
=

3 (n, Q,, n, )/2. Equation (la)

gives a proper description of the order in a discotic nematic phase if we identify the director as

the average orientation of the unit normals to the molecular discs ; see figure 16 as explained

in [27j, with this identification, S is positive for both rod-like and disc-like uniaxial nematic

liquid crystals, and no further distinction is required in this paper since rods are not considered

here. Since uniaxial extensional flow will not induce negative values for the scalar order

parameter S we further restrict its variation to the positive unit interval, 0 < S <1 [27].

To enforce the unit length constraint n n =

I and to visualize the director orbits on the unit

sphere, we parametrize the director with ;

" ~

('l,, 'i~., ii- =

(cos ql, sin # cos 9, sin # sin 9 (?)

as shown in figure la 9 (0 < 9 < 2 gr
is the azimuthal angle and # (0 < # < gr

is the polar
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Fig, I. Definition of (a) coordinate ~ystem. (b) Director orientation of a
uniaxial discotic nematic

liquid crystal, and (c) uniaxial e~tenmonal tlow deformation. (al Director angles and unit sphere :

(0
w w

~
w <s the az<muthal angle and ~ (o < ~ w w

is the polai angle. The north pole of the sphere
is located at ~ 0, the south pole at ~ w, and the equator at H, ~b ) [0, 2 w ], ± w/2 ), n denotes

the director. (b) The director in a discotic nematic phase is the average orientation of the unit normals to

the disc-like molecules. (cl Deformation~ of a unit cube, submitted to a uniaxial e~ten~ion deformation

along the .t-direction.

angle. The north pole of the sphere is located at d
=

0, the ~outh pole at ~
= gr, and the

equator at (9, ~
=

([0, ~ ml, ± gr/2 ).

In the unit sphere description [?2-25] the director tip, in the presence of flow, defines a

trajectory O (no ) on the surface of the sphere

O (no
=

(n ~
fl~

n nit, n,j), t ~ R+ j3)
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where no =
n (t

=

0 ), fl ~ denotes the surface of the unit sphere and R+ the positive reals. To

characterize the director orbits O(n,j) we need to define geodesics and meridians. A geodesic
G is the shortest arc connecting two points on the sphere, and is given by [28]

~~~ ~~~~ ~~~ ~ ~°~ (N21Sin ~ cos 6
Sin ~ sin 6

,

~ (4)

where N and N~ are constants that depend on the two points ; the geodesic or great circle, is

the interpection of the sphere with the plane containing the given points and the center of the

sphere. When the two points are the poles (Nj
=

gr) the degenerate geodesics are the

meridians M, which in terms of (9, ~ and the director components (ii~ ), are given by [?8]

tan 9
=

1/b (5a)

b~
=

II (N j ~ l (5b)

0
~

~
~ gr (5c)

n~ =

bn~ ; (6a)

< n, < ; (6b)

< >i~ <1 j6c)

where b(- m ~
h

~ m ) is a constant whose numerical value defines a particular meridian a

family of meridians is shown in figure la.

Figure lc shows the applied force F and deformations of a cube of discotic nematic

subjected at t 0 to a uniaxial extensional flow the applied extension and flow direction are

along the -<-axis (polar axis) and the compression (y = plane, that contains the equator of the

unit sphere, represents the degenerate circle of stable steady director orientation n,, =

j0, n,,,, n~,,)
=

(0, cos 9,,, sin 9~,), where the subscript ss denotes steady state.

To characterize the relaxation of the alignment as the director traverses the surface of the

sphere, we divide the sphere into three characteristic regions two equivalent spherical caps on

which n~(
~

II,/j, and the remaining spherical zone on which (ii~( ~

II,fi. In an

irrotational uniaxial extensional flow, the only flow effect on the orientation and alignment is

due to the symmetric part of the velocity gradient tensor iv, ), usually known as the rate of

strain tensor or rate of deformation tensor and denoted by A, and whose ij and

ji components are given by A,~ =
A,,

=
ii,,

,
+ v,

,

)/2. An important observation, used below

to classify the numerical results of alignment relaxation, is that a director whose tip lies in the

spherical caps samples extensional strains (A nn ~
0 ), while a director whose tip lies in the

spherical zone samples compressional strains (A nn ~
0).

2.2 GOVERNING ORIENTATION AND ALIGNMENT EQUATIONS. A sufficiently general entropy

production density A, similar to that proposed by [14], is given by [18]

2 D
=

A
=

(VKT) [«j (Q,, A,, I
+ «~(A,, A,, ) + «~(Q,, Qj, ) Aj~ A~j

+ 2 «~(4,j A,,1 + 2 «~iQ,, A,~ A~,1 + 4 «~14,, Q,j Aj, ) (7)

+ 2 «7(Q,, Q,i Aii At, + Ti16,, k,, i + ? T~IQ,, k,141,11

where the ij components of the corotational time derivative of the tensor order parameter

tj, and of the vorticity tensor W are given by

dQ,~
Q,,

~ ~ + Vi Q/,,
i

W,i Qi, + Q,i Wi, 18a)

W,
=

(u,
,

u, ,)/2 (8b)
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and where v~ is the k-th component of the linear velocity vector, «,(I =1,.., 7) and

r,(I
=

I, ?) are scalar phenomenological constants with units of time that satisfy certain

thermodynamic restrictions such that A m 0 [14], 1/v is a molecular volume, T is the absolute

temperature, and K is Boltzmann's constant. The most general expansion representing
A is not closed, but the truncation given by equation (7) is sufficiently general and can be

shown to reduce [18] that of Leslie-Ericksen theory [12, 13].

In the absence of spatial gradients IQ,,
=

0) the Lagrangian density A is the sum of

entropic A~(Q) [27] and flow ,4~(v, Vp, F) contributions

II
=

~t~
+

A~ (9a)

/l~
~

~
AQ,, Q,, + BQn,f Qfi Qin, +

(
C (Qfi Qif )~ (9b)

A~
= u, (pi, + d, p pF, (9c)

where A,B, and C are temperature dependent phenomenological coefficients, u is the

displacement vector, p is the density, p is the pressure, F is external body force per unit

volume. The negative of the entropic contribution /t~ adopted here is known as the excess

Landau-de Gennes free energy density [27], which is obtained from a truncated phenomenolo-
gical expansion in terms of the two independent invariants Q,, Q~, and Q,, Q~j Qj,. For uniaxial

nematics equation (la) holds and expression (9b) leads to the following excess free energy
density G(S, T) expansion

G
=

AS~
+

BS~
+

CS~ (10)

Usually, close to the nematic-isotropic transition, B and C are assumed to be independent of

temperature, and it is further assumed that A
=

a(T T*), where a is a constant. The cubic

term ensures a first order transition at T~ ~
T*, where T~ is the nematic-isotropic transition

temperature and T* is the temperature at which the free energy has zero curvature at

S =0 (@ S
=

0, d~G/dS~ =0). For 8~0 and for the appropriate temperature range,
equation (10) predicts the existence of the normal uniaxial discotic nematic phase, with the

molecular unit normals oriented along the director. The minima predicted by equation (10)

are :

S 0 (isotropic) ; (I la)

S
=

~
+

/( ~ ~ ~
(nematic) (I16)

2 C 2 C C

Equation (10) predicts the existence of four temperature regions [27] (I) T
~

T ~ the stable

phase is isotropic; (it) for T~~T~T~ there are two minima, the global one at

S
=

0 (isotropic) and the other one for the superheated nematic phase (iii) T*
~

T
~ T~ there

are two minima, the global one corresponding to the nematic phase, and the local one

corresponding to the supercooled isotropic phase; (iv) T~T* there is one minimum

corresponding to the nematic phase. At the nematic-isotropic transition temperature
T

=
T~ the free energies of the isotropic and nematic phases are equal and from equation (10) it

follows that (') Tc
=

T* + 2 B~/(9 aC ), (it) the value of the order parameter at the transition is

S~ =

2 B/ (3 C ), and (iii) the latent heat per unit volume for the first order nematic-isotropic
transition is L

=

2 aB~ T~/(9 C"). The temperature T~ divides the biphasic region from the

single isotropic region and the following holds: (I) T~
=

T* +B~/(4aC), (iii S~
=

B/(2 C ). The temperature T* is the lowest temperature for which the isotropic phase is
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metastable and at that temperature S*
=

B/C. Thus a characterization of G requires the

specification of the four parameters a, B, C, and T*. One common way to obtain values for the

parameters is to use the Maier-Saupe molecular field theory and express the results in the form

of equation (10). Here we use the following adapted results of Doi and Edwards [29], for such

parameter mapping between the phenomenological Landau-de-Gennes expansion and the

molecular mean field theory :

~
A

=

I
)

VKT ; (12a)

~
B

=

~
VKT ; (12b)

~
C

=

~
VKT (12c)

when the nematic potential U
=

3 T*/T, and where VKT refer to the same quantities as in

equation (7). The two parameters are now v and U. The resulting excess free energy density

now reads

G=)VKT(~ (l -)) S~-(US~+~US~j. (13)

The minima predicted by this free energy are [29]

S
=

0 (isotropic II 4a)

S
= +

~ ,fi (nematic) (14b)

In what follows we use the symbol S~~ (U), as given by the right hand side of equation (14b), to

denote the equilibrium order parameter in the absence of flow. Comparing (I16) and (14b) it

follows that if B/C
=

1/2, which is generally consistent with nematics [27], both equations
predict the same dimensionless temperature dependence of S, as embodied in the term

A/C. In addition, equation (13) predicts the existence of four temperature regions with the

same thermodynamic behavior as that predicted by equation (10) [29]. In terms of the nematic

potential U, the boundaries of these four regions and the values of the alignment
S in the nematic phase can be shown to be given by (I) U~

=

8/3, S~
=

I/4, (it)

U~
=

27/10, S~
=

1/3, (iii) U*
=

3, S*
=

1/2. In this work we use the two parameter

equation (13) to construct the Lagrangian A~, since as shown above (see also [29]). it is able to

capture with two parameters [he same qualitative thermodynamic behavior as the more general
equation (10), and because it is consistent with our objectives.

The presence of a given flow field in a spatially invariant uniaxial discotic liquid crystal

generates the following dynamical system :

=

Y(Y(t)) (isa)

y ~

(n, s) (isb)

y ~ fl ~
x [0, 1] (lsc)

y R+
-

fl "
x [0, 1] (lsd)
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To find Y(y(t)), we use the following set of Euler-Lagrange equations [30, 31]

3A 3D
~ l 6a)j

3h ~

iA 3D
~ (16b)4 3j

~~'
=

(3,, n, >1,

~~~
3j

~~' ~ ~'~
(16c)

3n, 3n, 3 (3j n, ?t jh

ill ~A
j

~~~ ~ ~~~ (16d)
4 AS d(d~ S) At ~j

~
~~" ~'~' '~<) ~~ d~

~~

~'~<
d (d~~i,

(16e

~~
=

~~
d~

~~
(160

3( AS d(dJ)

where iA/3y is the projected total Euler-Lagrange derivative, and 3D/3j is the projected

space Euler-Lagrange derivative [17]. The projection operator (3,, n, n,) that appears in the

director derivatives is required to eliminate the undetermined Lagrangian multiplier that arises

from the unit length constraint on the director n n =

for the alignment no constraints are

imposed and the projector operator is unity.
As shown in the Appendix, with the choices of II and A given in the equations (7, 9, 1?), the

dynamics of the director n and the alignment S are found to be

dn,

"
j~

= (~"
~' ~ ~ ~~<J '~<

(Ail ni n~) n, j

~
~

'
Aft nf n~ + p~/~

l 7a, b)

where A (S is the tumbling function, p (S) the ordering function, and p
~

(S, U is proportional

to
dA~/35 these functions are given by

=

h
=

(3 ml + ml S)/(3 S + rf S~) (18a)
Yi

pi
=-

(9«/+6«/s)/(6+4r/s) (18b)

p~= (-3s+Us+Us~-2Us~)/(3+2rfs) (18c)

where the starred coefficients are scaled with the alignment relaxation time rj.
To select numerical values for the three phenomenological parameters ml, ml,
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r/, we enforce the following constraints on the signs of A and yj [7-10] and on the values of

when S
=

0 and S
=

[7]

A
=

-h<0;
(19a)

Yi

yj m0; (19b)

lim A
=

m (19c)

I-ii

lim A
=

(19dj
I-1

The adopted values that satisfy the constraints are ml
=

Ill 0, al
=

1.7, rf
=

1.0, and

the resulting and pi are shown in figure 2. An indirect validation that the presently adopted
values of the phenomenological coefficients, [hat appear in the dimensionless formulation of

the governing equations for the idealized discotic nematic, may describe qualitatively some

important features of the flow of real carbonaceous mesophases can be found by comparing the

shear flow predictions of [3~] with the experiments of [33]. In [32] the present model was

solved for simple shear drag flow, using approximately similar values of the phenomenological
coefficients (m/, ml, rf), and it was predicted that shear flow instabilities may set in at

critical values of the shear rate these instabilities are transitions between flow-tumbling and

flow-aligning modes that characterize nematics of variable degree of orientation and

mathematically are bifurcations between two types of periodic attractors and a steady state

attractor. These shear flow instabilities were previously observed experimentally in a pressure-

driven shear flow of a real carbonaceous mesophase by [33], where the observed pattern

formation phenomena was explained using the tumbling-aligning transition, as calculated by
[32]. Lastly, other set of parameters obeying the constraints (19a, b, c, d) were used in this

work, but because the present flow is irrotational and all the attractors are steady states, the

only differences in the computed solution vectors will be in the time scales, and hence, for

brevity, these essentially similar results are omitted here.

o o

~
, ~i~

,(
4

'

'

'., -I .)

',
j

$ '.
w

] -2 + .I
fl ' #

g ' £

'

~~.0 0.3
1.I

Scalar Order Parameter, S

Fig. 2. Tumbling function A and the ordering function pi a; a
function of the ~calar order parameter

S. The tumbling function is the ratio of the coefficient for strain and vorticity viscous torques, while the

ordering function is the coefficient for the ambient strain rate A nn that governs the relaxation of

S. For discotics (rod-like) nematic~ both are negative (positive).
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If the alignment S is assumed to be constant, the present model is identical to the

Transversely Isotropic Fluid (TIF) model of Ericksen [34] applicable to purely viscous nematic

fluids

dn,
j ~ W>< '~< + ~ (A« '~<

(Aft '~f '~1~'~> (2°~)

A
=

Constant

A ~0 (rods), A ~0 (disks). (20b)

The constant alignment case was not studied in the present paper, but rigorous results for

uniaxial extensional and biaxial extensional flows for rodlike nematics using the TIF model

were obtained recently [35, 36]. A direct comparison of equations (17a) and (20a) shows that

for irrotational flows (W
=

0 ), the present model and the TIF model predict exactly the same

director orbits O (no and the only difference between the predicted director fields is the time

parametrization along the orbits ; this difference is important in applications since it affects the

number of strain units required to achieve a given orientation.

The following simplifying assumptions and approximations, have been made in deriving the

mathematical model that describes the flow-induced alignment and orientation of an ideal

discotic nematic liquid crystal, as given by equations (17, 18) (1) the fluid is incompressible
and the flow is isothermal (2) the orientation and alignment are space invariant all elastic

effects due to spatial gradients are neglected (3) the entropy production has been arbitrarily
truncated, such that it reduces to the Leslie-Ericksen expression (4) the three coefficients of

the Landau-de Gennes excess free energy have been fitted using two parameters; (5)

fluctuations that are important near the nematic-isotropic phase transition are neglected (6)

the velocity field is considered to be given, and therefore we dispense with solving the Cauchy
equation of motion which involves the use of the nine parameters appearing in equation (7).

2.3 GOVERNING EQUATIONS FOR uNiAxiAL EXTENSIONAL START~UP FLow. The velocity
field v(,i, y, =

corresponding to the uniaxial extensional start-up flow of the nematic sample,
is given by [26]

v~ I,rH(t) (2 la)

v,,
=

iyH(t) (216)

v-
=

I ?H(t) (21c)

H(t)
=

(° ~"°j (21d)
tm0

where is the constant extension rate. The non-zero components of the corresponding rate of

deformation tensor A are Aji
=

A~j
=

A~3
=

@/2 this flow is irrotational and the

vorticity tensor W
=

0. A useful decomposition of the director field n and the rate of

deformation tensor A is

n = n~ + njj (?2a)

n~ = n,
j

+ n-
I

; (22b)

njj = n~ (2?c)

A
=

13
~ ~ P (22d)
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where 3
=

it + jj + kk and P
=

jj + kk. Replacing equations (21, 22) into equations (17a,
17b), we obtain the following dimensionless set of coupled nonlinear ordinary differential

equations

d~ ~
A (n (

n~

~~ pi
~

~

~~~~' ~~

p ~ (2 3 n~ ) + De~ p~

n, =

sign in, (t
=

0 ))
fi(23c)

where
F =

it is the strain, De
=

@rj is the alignment Deborah number (dimensionless strain

rate). When De
-

0 the alignment (S ) relaxation is elastic, when De
- m it is purely viscous,

and for the intermediate values it is viscoelastic. At intermediate De the director relaxation is

also viscoelastic, since it is coupled to S through A (S).
The initial conditions used to solve equations (23) are @F

=

0 : n = no So
= S~~,

n~, no =

I, where So =S~~(U) is given by equation (14b). In this paper we use two

representative nematic potentials U
=

3 and U
=

5, and the corresponding initial conditions

are S~~(U
=

3
=

0.5 and S~~(U
=

5 )
=

0.76. All angles are reported in degrees.
Equations (23a, 23b) are integrated using an implicit corrector-predictor first order Euler

integration method with an adaptable time step [37]. Application of the implicit corrector-

predictor method transforms the set of coupled nonlinear ordinary differential equations (23a,
23b) into a set of coupled nonlinear algebraic equations. For each time step the algebraic
equations are solved using the Newton-Raphson iteration scheme [37] ; the predictor step

generates a first guess for the iteration loop and the corrector step is the iteration loop itself.

The adopted convergence criteria is that the length of the difference vector between the

calculated solution vectors corresponding to two successive iterations is less than 10~ ~ The

transient solution vector obtained from the numerical solutions (n(F), S(s)), is used to

calculate the tensor order parameter Q(e), and the converged steady state solutions

in,,, S,,) are used to compute the steady flow birefringence. To facilitate the discussion and

perform an analysis of the numerical solutions, some of the computed results are presented in

reference to the unit sphere description of the director field.

3. Results and discussions.

3. I DIRECTOR DYNAMICS GEoDEsic FLow AND viscoELAsTic RELAXATION. Integration of

equation (17) yields, for W
=

0 and for A as defined above, the following expression for the

director relaxation n(F) for the uniaxial extension start-up flow

E,~ n~o~'~~~
(E.no

n,(0)
= n,o

_
r

E,~ (s)
=

exp A~~
A dF'

o

I,~
=

A,,li (24)
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and in the component form

n, =

~"~~°

,

n, =

~~'~'°
ii~ =

~~~~°°
(25a)

E n~ E n~ E n~

E,~
= exp

iA dF' E,~
=

E--
= exp A dF' E,

=

0 for I # j (25b)
~

'

where
>i~~

is the jth component of the initial director orientation (n(0)). From (?5a, 25b) it

follows that n~, =

bn~ 16
=

n,o/n~o), and comparing with equations (5, 6) it follows that the

la )

95 §Q ~

Q ~

~

Q ~

# ,l ~ ~
e ~ q~ ~
oo ~3 ~f
ue #

E
~ #

E B

A B C D E
-5

'~
~ ~~

~~
j

~~
Extension Direction

egrees
_

(b) (c)

Fig. 3. Sensitivity of the director orbits to the initial conditions. (a) Schematic of the unit sphere and

several meridians (great circles through the poles) the ~t~direction is along the extension direction and the

equator represent~ the degenerate circle of stable steady director orientations. (b) Polar angle
~ as a function of the azimuthal angle for U 5 and De I, and for the following director initial

orientations (Hjj, ~,~) A
=

(88.72, ~.56), B
=

(63.4, 2.56 ), C
=

(45. 2.56), D
=

(26.56, 2.56),
E= (1.28. 2.56). (cl Corresponding computed scient<tic visualization of the director rela~ation,

represented by the normals to the shown discs. Predictability is lost when the initial orientation is on the

poles close to the poles there is high sensitivity to nj,.
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director orbits belong to the meridians, and the director dynamics belong to the class of

geodesic flows. Therefore the present problem should exhibits the characteristic sensitive

dependence on initial conditions, that is typical of geodesic flows [38]. Equations (25a, ?5b)

shows that the stable director steady states are n,, =
(0, n,ofii~o, n~o/n~~).

The director orbit follows a geodesic flow due to the inherent symmetry in the uniaxial

extensional flow. This result is also predicted by the TIF equation (?0a), since as
mentioned

above, for irrotational flows the geometry of the director orbits are insensitive to variations in

the magnitude of the alignment.
Figure 3a shows that the unit sphere with representative meridians, figure 3b shows the

computed polar angle ~ as a function of azimuthal angle 9, and figure 3c shows the

corresponding computed scientific visualization of the average disc's relaxation, for

U
=

5 and De
=

I, and the following director initial orientations (90, ~~)

A
=

(88.72, 2.56 ), B
=

(63.4, 2.56 ), C
=

(45, 2.56 ), D
=

(26.56, 2.56 ), E
=

(1.28, 2.56 ).

Figure 3a shows that when starting on the poles, the director steady states, depicted by the

equator, are unpredictable. The (9, ~ ) plot shows that the final steady state, denoted by the

upper horizontal line, is highly sensitive to small variations of the initial orientation when the

initial director tip is next to the poles. The computed director orbits follow the meridians

defined by equations (5, 6). The visualizations shows the director (normal to the shown discs)

90

,~ (~)

i
'~t
~ 43

W

Demi,o

/~/

I

i»
"

'
(C)

/

~

I 5

!
»

l

DeW,1

0

0

Strail~, £

Fig. 4. -Polar director angle ~ as a function of strain
F, for De (a), o.5 (b), and o.I (cl

U 3 (dash-dot line), U 5 (solid line), and the initial director orientation (H~, ~ o)
=

(45, 2.56). The

director rela~ation is viscoelastic, and it is faster at higher De and at lower U.
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relaxation, along the five different paths, exhibiting different combinations of tilting and

twisting along the time axis, but eventually leading to a stable orientation on the plane
o. z), normal to the extensional direction.

Figure 4 shows the polar director angle ~ as a function of strain F, for De
=

I (a), 0.5 (b),
and 0.I (cl U

=

3 (dash-dot line), U
=

5 (solid line), and (90, ~o
=

(45, 2.56). The figure
shows that the director relaxation is viscoelastic, and that it is faster at higher De and at lower

U, since for these conditions samples larger absolute values.

3.2 ALIGNMENT viscoELAsTic RELAXATION AND FLow INDUCED MELTING. The alignment
S(~ relaxation depends on no through the ambient strain rate A : nn. Figure 5a shows the three

representative regions for A : nn in the two equivalent spherical caps Rj the rate is positive

x

i

Ri (2/V3

-f-~-

<a)

180 p,

j ~' ~-b---------

f
Rz

e 03

»

RI

0 90 180 270 360

0 (Degrees)
~ ~ ~ ~~ ~ ~

Strain, e

<b)
<c)

Fig. 5. Sensitivity of the initial alignment S relaxation to the initial director orientation. (a) The three

characteristic regions for the ambient strain rate A : nn. (b) Plan" (0, w representation of the flhree
representative regions for A : nn : where A : nn ~

0 on the two equivalent upper and lower rectangles
(Rj and A : nn ~

0 on the middle rectangle (R~) to the two closed curves, and three characteristic initial
orientations (00, w~) : P

=

(45, 2.56) in R,, P~
=

(0.9, 54.7 ) in 3Rj
=

3R~, and P~ (2.56, 89.9 ) in

R~. (c) Initial alignment S relaxation for De 0.I and U 5.
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(A:nn~0), and in the spherical zone R~ the rate is negative (A:nn~0). The initial

alignment relaxation characteristics are given by

no in R,.
~~

~
0 (26a)

no in R~.
~~

~
0 ; (26b)

no in dR,
=

dR~.
~~

=
o, (26c)

de
~

=o'

~o

/

1'

/

/

" 0~3 /

,

,/ (a)

'

",
Dt=1.0

0.0 '

0 2 4

1~o

/

" °°~
/ (b)

' /

/

",
_/" Dt=0.5

0 2 4

1~o

" 0~3 / (c)

/
"

/',
/

"., / Dm0.1

0 2 4

Strain, e

Fig. 6. -Alignment relaxation S(~). corresponding to the conditions of the director relaxation of

figure 4. The figure shows that at higher De the viscous mode dominates and the effect of relative

magnitude of U is small, while at lower De the elastic mode dominates and the effect of relative

magnitude of U is large.
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Figure 5b shows the three representative regions for A nn, where the upper and lower

rectangles represent Rj, and the middle rectangle represents R~, and three characteristic initial

orientations (Ho, 4io) Pi
=

(45. 2.56 in Rj, P~
=

j0.9, 54.7 in dRj
=

dR~, and

P~
=

j?.56. 89.9 ) in R~. Figure 5c shows the corresponding initial alignment S relaxation for

De
=

0.I and U
=

5. It follows that for any De, a sufficient condition for increasing
S is that n is in R~.

Figure 6 shows the alignment relaxation S(
F ), corresponding to the conditions of the director

relaxation of figure 4. The figure shows that at higher De (De
=

I), the viscous mode

dominates the viscoelastic relaxation at all the times, and the effect of the relative magnitude of

U is small. At lower De (De =0.I), the elastic mode dominates at all times if

U
=

5, and negligible changes occur since So iS~~, while for U
=

3 the viscous mode

dominates the initial response, but the elastic mode dominates the later stage. Since in this

figure no is in Rj, the alignment relaxation always shows an initial decrease in S. Comparing
the steady state alignment S,, for all cases, it is seen that at larger De, the viscous mode

dominates and the effect of U is small, while at lower De, the elastic mode dominates and the

effect of U is large.

e~

(a)

.0

fIe~J
,

'

/

,''$W-3
" 0.3

"

+

-'
-'

"_

De~i.o

0.0 """""'

1.00 0.73 0.30

nx

(b)

Fig. 7. (a) Alignment S and x-component of the director n, as a
function of strain F, and 16 projection

of figure 7a on the jS, n, plane, with the initial orientation
o~~, wjj) (45. 2.56) close to the pole, for

U 5, and De
=

0,I (da;h-triple dot line), 0.5 (dmh-dot line), and (full liner. The dotted line

corresponds to dS/dn,
=

0 at high De discotic nematics undergo practically a temporary melting while

the director is in Rj (n,
~

(3 )~ '~~).
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Figure 7a shows the alignment S and >.-component of the director fi, as a function of strain

~, and figure 7b shows the projection of figure 7a on the (S, n,) plane, with the initial

orientation Ho, ~bo
=

(45, 2.56 close to the pole, for U
=

5, and De
=

0. (dash-triple dot

line), 0.5 (dash-dot line), and (full line). Figure 7a shows the coupling of the orientation and

alignment relaxations, which indicates that by increasing De the increasing relaxation follows

a two step process : an initial decrease in S followed by monotonic increase (decrease) in

S(n,). The nature of the (n,, S) coupling is shown in figure 7b, where the dotted line

corresponds to dS/dn, =0. For the given no, the higher De the lower the value of

n, at which S starts increasing for large De, discotic nematics undergo practically a temporary
melting while the director is in Rj in,

~
(3)~ '~~). For this particular case a more accurate

model should include the fluctuations that are present near the isotropic-nematic phase
transition.

0.30
'~".,,

o.25
.,

~',
l'~

~

"~
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'
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,.

o,2s
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~
(©)

_/[."'

~y* 0.00 ,KJ

~o.25 .-..."'

~ ~
(c) ~~

cy' o.oo ~KJ
"' ,/.

~.25 ."'

-0~30

0 3 3 3 3

Straill,£
Fig. 8. Relaxation of the component~ of the tensor order parameter Q with the initial orientation

jo~,, wu) (45, 2.56 close to the pole, for U
=

5, and De 0,I (triple dot-dash line), 0.5 (da~h-dot

line), and I (full line). For the chosen initial orientation n~u n
~,,

and from equation (6) it follows that

Q<, Q'z ~rld Q== Q>,'
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In contrast to the steady state director orientation which may exhibit a strong sensitivity to

the-initial orientation, the steady state scalar order parameter is independent of the initial

orientation, and depends on the magnitudes of De and U, as shown by the lower

equation (23b).

3.3 TENSOR ORDER PARAMETER RELAXATION AND FLow BIREFRINGENCE. Figure 8 shows

the relaxation of the components of the tensor order parameter Q with the initial orientation

(Ho, ~b~ =

(45, 2.56 close to the pole, for U
=

5, and De
=

0. (triple dot-dash line), 0.5

(dash-dot line), and I (full line). For the chosen initial orientation n,,o = n~~, and from

equation (6) it follows that Q,~
=

Q,~ and Qzz
=

Qv; For the shown parameters the relaxation is

virtually complete after 5 strain units. At low De the relaxation of the trace components
(Q,, are dominated by the director relaxation shown in figure 4, since for U

=

5 the alignment
is nearly constant (see Fig. 6). At higher De the relaxation of the trace components is

dominated by the viscous mode, and reflects the two step process described in figure 7. At low

De the non-diagonal terms of Q are again governed by the director relaxation, while at higher
De, the viscous effect introduces an initial large decrease in S while n is in R and a subsequent

increase in S while n is in R~, with the result that the only large component is

Q,,=, which follows a lag plus exponential growth relaxation.

According to [27], the birefringence A7~ can be expressed by

~'l
~

'~~ /~ ~j (~~~

where ejj and e~ are the elements of the dielectric tensor e,~ parallel and normal to the director,

the tensor is given by e,~ = i&~~ + Ae~~~ Q,~, where the first term is the average trace of

e,~ and Ae~~, is the anisotropy for S
=

I ; for discotics, A7~ ~
0 since Ae~~~

~
0. In deriving

equation (27) we have assumed that I w 2 Ae~~~ S/3 for the values of S corresponding to the

nematic phase. Equation (27) shows that the steady flow-induced birefringence A7~~ is

proportional to the magnitude of the steady alignment S,,.
Figure 9 shows the steady state alignment S~~ as a function of De, for U

=

3 (dash-dot line)

and U
=

5 (full line). The figure shows a monotonic increase in the flow birefringence, at high
De the viscous mode dominates and the effect of the magnitude of U is small, while at low De

the elastic mode dominates and the effect of the magnitude of U on S~~ is large.

.oo

;

,

,

;

,

;

;

nf °.?5 ,"

,

;

,
1'

o.o o.3 1.o

Fig. 9. Steady state alignment S,, as a function of De, for U 3 (dash-dot line) and U
=

5 (full line).

The flow birefringence is proportional to S,, and increases with De.
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4. Conclusions.

In this initial investigation of the nematorheology of uniaxial discotics in uniaxial extensional

flows, we have performed a useful characterization of the sensitivity of the director, scalar

order parameter, and tensor order parameter relaxation with respect to the nematic potential,
the alignment Deborah number, and the initial director orientation. Use of unit sphere
description identified the director dynamics as a geodesic flow. This observation is used to

explain the loss of predictability when the director is initially aligned along the extension

direction, and allows for the use of the, simple geometrical principle to identify the director

orbits. The identification of the governing De parameter allows for the classification into the

different elastic and viscous dominated relaxations. For large De, temporarily flow induced

melting of the nematic phase may occur. This unified picture of relaxation under extension

may be used to explain the characteristic pattems found in the cross-section of melt spun

carbonaceous mesophases. In the extension-dominated flow process the normals to the

molecular planes always align anywhere in the plane normal to the fiber axis, as shown in this

paper for the stretching of a model discotic. The present analysis provides for a basis for the

more general spatially in homogeneous case, where Frank elasticity must be included.
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Appendix.

Substituting of equations I into (7), and the negative of equation jl 3) yield, respectively, the

following equations for the dissipation ~ and the Langrangian A~

2 DjVKT)~ '
=

A(VKT)~ '
= aj in, A,j nj)~ + a~A,~ A~j + («5 + a6)('i~ A~j Aji ni) +

+ yj
N)

+ 2 y~ fi, A,~ N~ + Hi S~ + ~L~ Sin, A,~ n~
(A, I)

A~=- VKT~((3-U)S~-jU©+(US~j (A.2)

where

aj = «j S~ (A.3a)

a~ = «~ 2 «~ S/3 + 2(«~ + «~/3 S~/3 (A.3b)

a~ + a~ =

2 «~ S + 2 «~
S~/3 (A.3c)

yj =

2(vj + v~S/3 )S~ (A.3d)

y~ =

2 («~ + «~ S/3 S (A.3e)

Hi =

2(3 vj + 2 v~
S)/9 (A.30

M~ =

2(9 «~ + 6 «~ S )/9 (A.3g)

dn,
N,

=
+ (v~ d~

) n, W,~ n~
(A.3h)

dt
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Taking the space Euler-Lagrange derivative of D (Eqs. (16e, 16fl), yields

~~
=

i,KT(&,~ n, n~ )(yj N~ + y~ A~i ni + xn~ ) (A.4al
3ii,

~~
=

VKT(M S + ~L~ A~t n~
ni12 ) (A.4b)

35

where x is a scalar Lagrange multiplier. Taking the total Euler-Lagrange derivative of

A~ (Eqs. (16c, 16d)) yields

~'~

=

0 (A.5a)
n~

~~~~
=

VKT[2 [(3 U) S US~
+ 2 US~]/9 ]. (A.5b)

Subtracting equation (A.4a) from equation (A.5a), and equation (A.4b) from equation (A.5b)

yields :

j&,~ n, fi~
)(yj N~ + y~ A~j nj + xn~)

=

0 jA.6)

-2[(3-U)S-US~+2US~]/9-~LjS-)~L~Atjnjnt=0 (A.7)

which yield equations (17a, 17b), upon the following identification

Yi M? fl? 2[j3 U S US~ + 2 US~]/9
~=-~ Pi"-) "=- .8)

Yi Hi ~i Hi
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